Motivated by the pressing needs for dissecting heterogeneous relationships in gene expression data, here we generalize the squared Pearson correlation to capture a mixture of linear dependences between two real-valued variables, with or without an index variable that specifies the line memberships. We construct the generalized Pearson correlation squares by focusing on three aspects: variable exchangeability, no parametric model assumptions, and inference of population-level parameters. To compute the generalized Pearson correlation square from a sample without a line-membership specification, we develop a -lines clustering algorithm to find clusters that exhibit distinct linear dependences, where can be chosen in a data-adaptive way.
View Article and Find Full Text PDFA central task in expression quantitative trait locus (eQTL) analysis is to identify cis-eGenes (henceforth "eGenes"), i.e., genes whose expression levels are regulated by at least one local genetic variant.
View Article and Find Full Text PDFBackground: Estimating and accounting for hidden variables is widely practiced as an important step in molecular quantitative trait locus (molecular QTL, henceforth "QTL") analysis for improving the power of QTL identification. However, few benchmark studies have been performed to evaluate the efficacy of the various methods developed for this purpose.
Results: Here we benchmark popular hidden variable inference methods including surrogate variable analysis (SVA), probabilistic estimation of expression residuals (PEER), and hidden covariates with prior (HCP) against principal component analysis (PCA)-a well-established dimension reduction and factor discovery method-via 362 synthetic and 110 real data sets.
Motivation: Gene clustering is a widely used technique that has enabled computational prediction of unknown gene functions within a species. However, it remains a challenge to refine gene function prediction by leveraging evolutionarily conserved genes in another species. This challenge calls for a new computational algorithm to identify gene co-clusters in two species, so that genes in each co-cluster exhibit similar expression levels in each species and strong conservation between the species.
View Article and Find Full Text PDF