Publications by authors named "Heather Hook"

Transcription factor (TF)-cofactor (COF) interactions define dynamic, cell-specific networks that govern gene expression; however, these networks are understudied due to a lack of methods for high-throughput profiling of DNA-bound TF-COF complexes. Here, we describe the Cofactor Recruitment (CoRec) method for rapid profiling of cell-specific TF-COF complexes. We define a lysine acetyltransferase (KAT)-TF network in resting and stimulated T cells.

View Article and Find Full Text PDF

Although >90% of somatic mutations reside in non-coding regions, few have been reported as cancer drivers. To predict driver non-coding variants (NCVs), we present a transcription factor (TF)-aware burden test based on a model of coherent TF function in promoters. We apply this test to NCVs from the Pan-Cancer Analysis of Whole Genomes cohort and predict 2555 driver NCVs in the promoters of 813 genes across 20 cancer types.

View Article and Find Full Text PDF

A proper understanding of disease etiology will require longitudinal systems-scale reconstruction of the multitiered architecture of eukaryotic signaling. Here we combine state-of-the-art data acquisition platforms and bioinformatics tools to devise PAMAF, a workflow that simultaneously examines twelve omics modalities, i.e.

View Article and Find Full Text PDF

Non-coding DNA variants (NCVs) impact gene expression by altering binding sites for regulatory complexes. New high-throughput methods are needed to characterize the impact of NCVs on regulatory complexes. We developed CASCADE (Customizable Approach to Survey Complex Assembly at DNA Elements), an array-based high-throughput method to profile cofactor (COF) recruitment.

View Article and Find Full Text PDF

Nuclear factor-kappa B (NF-κB) transcription factors coordinate gene expression in response to a broad array of cellular signals. In vertebrates, there are five NF-κB proteins (c-Rel, RelA/p65, RelB, p50, and p52) that can form various dimeric combinations exhibiting both common and dimer-specific DNA-binding specificity. In this chapter, we describe the use of the nuclear extract protein-binding microarray (nextPBM), a high-throughput method to characterize the DNA binding of transcription factors present in cell nuclear extracts.

View Article and Find Full Text PDF