Background: Head and neck squamous cell carcinoma (HNSCC) presents significant treatment challenges, particularly in cases unrelated to human papillomavirus (HPV). The chemokine receptor CXCR4, interacting with its ligand CXCL12, plays a crucial role in tumor proliferation, metastasis, and treatment resistance. This study explores the therapeutic potential of engineered monomeric and dimerized CXCL12 variants (CXCL12 and CXCL12, respectively) in HNSCC and evaluates potential additive effects when combined with radiation therapy.
View Article and Find Full Text PDFRepurposing therapeutic agents with existing clinical data is a common strategy for developing radiation countermeasures. IEPA (imidazolyl ethanamide pentandioic acid) is an orally bioavailable small molecule pseudopeptide with myeloprotective properties, a good clinical safety profile, and stable chemical characteristics facilitating stockpiling. Here, we evaluated IEPA's radiomitigative efficacy in the hematopoietic subsyndrome of acute radiation syndrome (H-ARS) using total-body irradiation (TBI) models in C57BL/6J mice and WAG/RijCmcr rats, applying various posology schemes and introducing syringe feeding of the IEPA formulation in the pudding.
View Article and Find Full Text PDFSignificance: Although the lymphatic system is the second largest circulatory system in the body, there are limited techniques available for characterizing lymphatic vessel function. We report shortwave-infrared (SWIR) imaging for minimally invasive quantification of lymphatic circulation with superior contrast and resolution compared with near-infrared first window imaging.
Aim: We aim to study the lymphatic structure and function via SWIR fluorescence imaging.
Hematopoietic aging is associated with decreased hematopoietic stem cell (HSC) self-renewal capacity and myeloid skewing. We report that culture of bone marrow (BM) HSCs from aged mice with epidermal growth factor (EGF) suppressed myeloid skewing, increased multipotent colony formation, and increased HSC repopulation in primary and secondary transplantation assays. Mice transplanted with aged, EGF-treated HSCs displayed increased donor cell engraftment within BM HSCs and systemic administration of EGF to aged mice increased HSC self-renewal capacity in primary and secondary transplantation assays.
View Article and Find Full Text PDFDespite the promise of concurrent radiotherapy (RT) and immunotherapy in head and neck cancer (HNC), multiple randomized trials of this combination have had disappointing results. To evaluate potential immunologic mechanisms of RT resistance, we compared pre-treatment HNCs that developed RT resistance to a matched cohort that achieved curative status. Gene set enrichment analysis demonstrated that a pre-treatment pro-immunogenic tumor microenvironment (TME), including type II interferon [interferon gamma (IFNγ)] and tumor necrosis factor alpha (TNFα) signaling, predicted cure while type I interferon [interferon alpha (IFNα)] enrichment was associated with an immunosuppressive TME found in tumors that went on to recur.
View Article and Find Full Text PDFUnlabelled: Bone marrow vascular endothelial cells (BM EC) regulate multiple myeloma pathogenesis. Identification of the mechanisms underlying this interaction could lead to the development of improved strategies for treating multiple myeloma. Here, we performed a transcriptomic analysis of human ECs with high capacity to promote multiple myeloma growth, revealing overexpression of the receptor tyrosine kinases, EPHB1 and EPHB4, in multiple myeloma-supportive ECs.
View Article and Find Full Text PDFPurpose: Vascular endothelium plays a central role in the pathogenesis of acute and chronic radiation injuries, yet the mechanisms which promote sustained endothelial dysfunction and contribute to late responding organ failure are unclear. We employed 2 window (> 1100 nm emission) Near-Infrared (NIR) imaging using indocyanine green (ICG) to track and define the role of the notch ligand Delta-like ligand 4 (Dll4) in mediating vascular injury in two late-responding radiosensitive organs: the lung and kidney.
Procedures: Consomic strains of female Salt Sensitive or SS (Dll4-high) and SS with 3 chromosome inherited from Brown Norway, SS.
Introduction: Radiation therapy for head and neck squamous cell carcinoma is constrained by radiotoxicity to normal tissue. We demonstrate 100 nm theranostic nanoparticles for image-guided radiation therapy planning and enhancement in rat head and neck squamous cell carcinoma models.
Methods: PEG conjugated theranostic nanoparticles comprising of Au nanorods coated with Gadolinium oxide layers were tested for radiation therapy enhancement in 2D cultures of OSC-19-GFP-luc cells, and orthotopic tongue xenografts in male immunocompromised Salt sensitive or SS rats via both intratumoral and intravenous delivery.
Objectives: Human Papillomavirus (HPV)-negative head and neck cancer (HNC) is an aggressive malignancy with a poor prognosis. To improve outcomes, we developed a novel liposomal targeting system embedded with 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH), a chlorin-based photosensitizer. Upon exposure to 660 nm light, HPPH phototriggering generates reactive oxygen species.
View Article and Find Full Text PDFIn experimental animal models, biological sex-differences in the manifestation and severity of normal tissue radiation injury have been well-documented. Previously we demonstrated male and female rats have differential and highly reproducible responses to high-dose partial body irradiation (PBI) with male rats having greater susceptibility to both gastrointestinal acute radiation syndrome (GI-ARS) and radiation pneumonitis than female rats. In the current study, we have investigated whether differential expression of the renin-angiotensin system (RAS) enzymes angiotensin converting enzyme (ACE) and ACE2 contribute to the observed sex-related differences in radiation response.
View Article and Find Full Text PDFCurrently, there are no biomarkers to predict lethal lung injury by radiation. Since it is not ethical to irradiate humans, animal models must be used to identify biomarkers. Injury to the female WAG/RijCmcr rat has been well-characterized after exposure to eight doses of whole thorax irradiation: 0-, 5-, 10-, 11-, 12-, 13-, 14- and 15-Gy.
View Article and Find Full Text PDFPurpose: The goal of the current study was to identify longitudinal changes in urinary metabolites following IR exposure and to determine potential alleviation of radiation toxicities by administration of recombinant APC formulations.
Materials And Methods: Female adult WAG/RijCmcr rats were irradiated with 13.0 Gy leg-out partial body X-rays; longitudinally collected urine samples were subject to LC-MS based metabolomic profiling.
Purpose: To test IPW-5371 for the mitigation of the delayed effects of acute radiation exposure (DEARE). Survivors of acute radiation exposure are at risk for developing delayed multi-organ toxicities; however, there are no FDA-approved medical countermeasures (MCM) to mitigate DEARE.
Methods: WAG/RijCmcr female rat model of partial-body irradiation (PBI), by shielding part of one hind leg, was used to test IPW-5371 (7 and 20 mg kgd) for mitigation of lung and kidney DEARE when started 15 d after PBI.
Purpose: Victims of acute radiation exposure are susceptible to hematopoietic toxicity due to bone marrow damage and loss of mature blood elements. Here, we evaluated cord blood-derived endothelial progenitor cells (CB-EPCs) as a potential cellular therapy for mitigation of hematologic acute radiation syndrome. CB-EPCs express endothelial cell markers and maintain their growth characteristics beyond 10+ passages without diminishing their doubling capacity.
View Article and Find Full Text PDFAs the single cell lining of the heart and all blood vessels, the vascular endothelium serves a critical role in maintaining homeostasis via control of vascular tone, immune cell recruitment, and macromolecular transit. For victims of acute high-dose radiation exposure, damage to the vascular endothelium may exacerbate the pathogenesis of acute and delayed multi-organ radiation toxicities. While commonalities exist between radiation-induced endothelial dysfunction in radiosensitive organs, the vascular endothelium is known to be highly heterogeneous as it is required to serve tissue and organ specific roles.
View Article and Find Full Text PDFObjective: We aim to quantify the absolute protein expression of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) in various cells and tissues to determine the relative contribution of COX-1 and COX-2 to PGE production.
Methods: An LC-MS method was developed and validated, then used for quantifying the absolute amounts of COX-1 and COX-2 in recombinant human COX-1 and COX-2, lysates from different cells, tissue microsomes of rodents and humans, Pirc rat colonic polyps, and biopsy specimens from squamous cell carcinoma (SCC) patients. The COX-1 and COX-2 turnover numbers were subsequently calculated based on apparent formation rates of PGE.
The renin-angiotensin system (RAS) is known to regulate the pathogenesis of radiation-induced injury as inhibitors of the RAS enzyme angiotensin converting enzyme (ACE) have established function as mitigators of multi-organ radiation injury. To further elucidate the role of RAS signaling during both the acute and delayed syndromes of radiation exposure, we have evaluated whether pharmacologic modulation of alternate RAS enzyme angiotensin converting enzyme 2 (ACE2) reduces the pathogenesis of multi-organ radiation-induced injuries. Here, we demonstrate pharmacologic ACE2 activation with the small molecule ACE2 agonist diminazene aceturate (DIZE) improves survival in rat models of both hematologic acute radiation syndrome (H-ARS) and multi-organ delayed effects of acute radiation exposure (DEARE).
View Article and Find Full Text PDFBackground: Despite the importance of immune response and environmental stress on head and neck cancer (HNC) outcomes, no current pre-clinical stress model includes a humanized immune system.
Methods: We investigated the effects of chronic stress induced by social isolation on tumor growth and human immune response in subcutaneous HNC tumors grown in NSG-SGM3 mice engrafted with a human immune system.
Results: Tumor growth (p < 0.
Purpose: Radiation-induced lung injury is a major dose-limiting toxicity for thoracic radiation therapy patients. In experimental models, treatment with angiotensin converting enzyme (ACE) inhibitors mitigates radiation pneumonitis; however, the mechanism of action is not well understood. Here, we evaluate the direct role of ACE inhibition on lung immune cells.
View Article and Find Full Text PDFIonizing radiation and chemotherapy deplete hematopoietic stem cells and damage the vascular niche wherein hematopoietic stem cells reside. Hematopoietic stem cell regeneration requires signaling from an intact bone marrow (BM) vascular niche, but the mechanisms that control BM vascular niche regeneration are poorly understood. We report that BM vascular endothelial cells secrete semaphorin 3 A (SEMA3A) in response to myeloablation and SEMA3A induces p53 - mediated apoptosis in BM endothelial cells via signaling through its receptor, Neuropilin 1 (NRP1), and activation of cyclin dependent kinase 5.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) is a member of the nerve growth factor family which has been extensively studied for its roles in neural development, long-term memory, brain injury, and neurodegenerative diseases. BDNF signaling through tropomyosin receptor kinase B (TrkB) stimulates neuronal cell survival. For this reason, small molecule TrkB agonists are under pre-clinical develoment for the treatment of a range of neurodegenerative diseases and injuries.
View Article and Find Full Text PDF