Mnk kinases regulate the phosphorylation and activation of the eukaryotic initiation factor 4E (eIF4E), a protein that plays key roles in the initiation of messenger RNA translation and whose activity is critical for various cellular functions. eIF4E is deregulated in acute myeloid leukemia (AML), and its aberrant activity contributes to leukemogenesis. We determined whether cercosporamide, an antifungal agent that was recently shown to act as a unique Mnk inhibitor, exhibits antileukemic properties.
View Article and Find Full Text PDFThe mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in growth and survival of BCR-ABL transformed cells. AMPK kinase is a metabolic sensor that exhibits suppressive effects on the mTOR pathway and negatively regulates mTOR activity. We report that AMPK activators, such as metformin and 5-aminoimidazole-4-carboxamide ribonucleotide, suppress activation of the mTOR pathway in BCR-ABL-expressing cells.
View Article and Find Full Text PDFPurpose: To determine whether mTORC2 and rapamycin-insensitive (RI)-mTORC1 complexes are present in acute myeloid leukemia (AML) cells and to examine the effects of dual mTORC2/mTORC1 inhibition on primitive AML leukemic progenitors.
Experimental Design: Combinations of different experimental approaches were used, including immunoblotting to detect phosphorylated/activated forms of elements of the mTOR pathway in leukemic cell lines and primary AML blasts; cell-proliferation assays; direct assessment of mRNA translation in polysomal fractions of leukemic cells; and clonogenic assays in methylcellulose to evaluate leukemic progenitor-colony formation.
Results: mTORC2 complexes are active in AML cells and play critical roles in leukemogenesis.
Mnk kinases are downstream effectors of mitogen-activated protein kinase pathways and mediate phosphorylation of the eukaryotic initiation factor (eIF4E), a protein that plays a key role in the regulation of mRNA translation and is up-regulated in acute myeloid leukemia (AML). We determined the effects of chemotherapy (cytarabine) on the activation status of Mnk in AML cells and its role in the generation of antileukemic responses. A variety of experimental approaches were used, including immunoblotting, apoptosis assays, small interfering RNA (siRNA)-mediated knockdown of proteins, and clonogenic hematopoietic progenitor assays in methylcellulose.
View Article and Find Full Text PDFArsenic trioxide (As(2)O(3)) exhibits potent antitumor effects in vitro and in vivo, but the precise mechanisms by which it generates such responses are not well understood. We provide evidence that As(2)O(3) is a potent inducer of autophagy in leukemia cells. Such induction of autophagy by As(2)O(3) appears to require activation of the MEK/ERK pathway but not the AKT/mammalian target of rapamycin or JNK pathways.
View Article and Find Full Text PDFmTOR-generated signals play critical roles in growth of leukemic cells by controlling mRNA translation of genes that promote mitogenic responses. Despite extensive work on the functional relevance of rapamycin-sensitive mTORC1 complexes, much less is known on the roles of rapamycin-insensitive (RI) complexes, including mTORC2 and RI-mTORC1, in BCR-ABL-leukemogenesis. We provide evidence for the presence of mTORC2 complexes in BCR-ABL-transformed cells and identify phosphorylation of 4E-BP1 on Thr37/46 and Ser65 as RI-mTORC1 signals in primary chronic myelogenous leukemia (CML) cells.
View Article and Find Full Text PDFArsenic trioxide (As(2)O(3)) has potent antileukemic properties in vitro and in vivo, but the mechanisms by which it generates its effects on target leukemic cells are not well understood. Understanding cellular mechanisms and pathways that are activated in leukemic cells to control the generation of As(2)O(3) responses should have important implications in the development of novel approaches using As(2)O(3) for the treatment of leukemias. In this study, we used immunoblotting and immune complex kinase assays to provide evidence that the kinases thousand-and-one amino acid kinase 2 (TAO2) and transforming growth factor-beta-activated kinase 1 (TAK1) are rapidly activated in response to treatment of acute leukemia cells with As(2)O(3).
View Article and Find Full Text PDFAm J Respir Crit Care Med
February 2009
Rationale: Werner's syndrome is a genetic disorder that causes premature aging due to loss-of-function mutations in a gene encoding a member of the RecQ helicase family. Both Werner's syndrome and cigarette smoking accelerate aging. No studies have examined the effect of cigarette smoke on Werner's syndrome protein.
View Article and Find Full Text PDFArsenic trioxide (As(2)O(3)) is a potent inducer of apoptosis of leukemic cells in vitro and in vivo, but the mechanisms that mediate such effects are not well understood. We provide evidence that the Akt kinase is phosphorylated/activated during treatment of leukemia cells with As(2)O(3), to regulate downstream engagement of mammalian target of rapamycin (mTOR) and its effectors. Using cells with targeted disruption of both the Akt1 and Akt2 genes, we found that induction of arsenic trioxide-dependent apoptosis is strongly enhanced in the absence of these kinases, suggesting that Akt1/Akt2 are activated in a negative feedback regulatory manner, to control generation of As(2)O(3) responses.
View Article and Find Full Text PDF