Increased use of neonicotinoid-coated crop seeds introduces greater amounts of insecticides into the environment, where they are vulnerable to transport. To understand the transport of neonicotinoids from agricultural fields, we planted maize (Zea mays L.) seeds coated with thiamethoxam in lysimeter plots in central Pennsylvania.
View Article and Find Full Text PDFRegulatory watershed mitigation programs typically emphasize widespread adoption of best management practices (BMPs) to meet total maximum daily load (TMDL) goals. To comply with the Chesapeake Bay TMDL, jurisdictions must develop watershed implementation plans (WIPs) to determine the number and type of BMPs to implement. However, the spatial resolution of the bay-level model used to determine these load reduction goals is so coarse that the regulatory plan cannot consider heterogeneity in local conditions, which affects BMP effectiveness.
View Article and Find Full Text PDFSurface application of manure on no-till farms can exacerbate P losses in runoff, contributing to the eutrophication of surface waters. We monitored 12 400-m field plots over 4 yr to compare P losses in surface runoff and lateral subsurface flow with shallow disk injection and broadcast application of dairy manure. Given the substantial variability in annual P losses, as well as a gradual, annual buildup of residual soil test P, significant differences in runoff P losses were detected in only 1 of 4 yr: in 2014, total P losses in runoff were 68% greater from broadcast manure plots than injected manure plots.
View Article and Find Full Text PDF