We describe a structural and functional study of the G protein-coupled apelin receptor, which binds two endogenous peptide ligands, apelin and Elabela/Toddler (ELA), to regulate cardiovascular development and function. Characterisation of naturally occurring apelin receptor variants from the UK Genomics England 100,000 Genomes Project, and AlphaFold2 modelling, identifies T89 as important in the ELA binding site, and R168 as forming extensive interactions with the C-termini of both peptides. Base editing to introduce an R/H168 variant into human stem cell-derived cardiomyocytes demonstrates that this residue is critical for receptor binding and function.
View Article and Find Full Text PDFThe identification of cannabinoid ligands Cannabidiol and O-1918 as inverse agonists of the orphan receptor GPR52 is reported. Detailed characterisation of GPR52 pharmacology and modelling of the proposed receptor interaction is described. The identification of a novel and further CNS pharmacology for the polypharmacological agent and marketed drug Cannabidiol is noteworthy.
View Article and Find Full Text PDFBiochem Soc Trans
February 2016
Phosphoinositides are important components of eukaryotic membranes that are required for multiple forms of membrane dynamics. Phosphoinositides are involved in defining membrane identity, mediate cell signalling and control membrane trafficking events. Due to their pivotal role in membrane dynamics, phosphoinositide de-regulation contributes to various human diseases.
View Article and Find Full Text PDFMaintenance of epithelial polarity depends on the correct localization and levels of polarity determinants. The evolutionarily conserved transmembrane protein Crumbs is crucial for the size and identity of the apical membrane, yet little is known about the molecular mechanisms controlling the amount of Crumbs at the surface. Here, we show that Crumbs levels on the apical membrane depend on a well-balanced state of endocytosis and stabilization.
View Article and Find Full Text PDFPhosphoinositides are signalling lipids that are crucial for major signalling events as well as established regulators of membrane trafficking. Control of endosomal sorting and endosomal homeostasis requires phosphatidylinositol-3-phosphate (PI(3)P) and phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2), the latter a lipid of low abundance but significant physiological relevance. PI(3,5)P2 is formed by phosphorylation of PI(3)P by the PIKfyve complex which is crucial for maintaining endosomal homeostasis.
View Article and Find Full Text PDFWhile the Amyloid Precursor Protein (APP) plays a central role in Alzheimer's disease, its cellular function still remains largely unclear. It was our goal to establish APP function which will provide insights into APP's implication in Alzheimer's disease. Using our recently developed proteo-liposome assay we established the interactome of APP's intracellular domain (known as AICD), thereby identifying novel APP interactors that provide mechanistic insights into APP function.
View Article and Find Full Text PDFThe deltaproteobacterium Myxococcus xanthus predates upon members of the soil microbial community by secreting digestive factors and lysing prey cells. Like other Gram-negative bacteria, M. xanthus produces outer membrane vesicles (OMVs), and we show here that M.
View Article and Find Full Text PDF