Background: Despite recent advances in immunotherapy, a substantial population of late-stage melanoma patients still fail to achieve sustained clinical benefit. Lack of translational preclinical models continues to be a major challenge in the field of immunotherapy; thus, more optimized translational models could strongly influence clinical trial development. To address this unmet need, we designed a preclinical model reflecting the heterogeneity in melanoma patients' clinical responses that can be used to evaluate novel immunotherapies and synergistic combinatorial treatment strategies.
View Article and Find Full Text PDFBackground: Small cell lung cancer (SCLC) is a deadly disease with a 5-year survival of less than 7%. The addition of immunotherapy to chemotherapy was recently approved as first-line treatment; however, the improved clinical benefit is modest, highlighting an urgent need for new treatment strategies. Nemvaleukin alfa, a novel engineered interleukin-2 fusion protein currently in phase I-III studies, is designed to selectively expand cytotoxic natural killer (NK) cells and CD8 T cells.
View Article and Find Full Text PDFNemvaleukin alfa (nemvaleukin, ALKS 4230) is a novel cytokine created by the fusion of circularly permuted interleukin-2 (IL-2) to the IL-2R subunit of the IL-2 receptor (IL-2R) complex that confers selectivity for the intermediate-affinity IL-2R expressed on CD8 T cells and natural killer (NK) cells. The pharmacokinetics and selective pharmacodynamic properties of nemvaleukin have been demonstrated using in vitro and in vivo mouse models. The pharmacokinetic/pharmacodynamic effects of nemvaleukin on immune cell subtypes were evaluated in cynomolgus monkeys after intravenous and subcutaneous administration to inform dose selection and predict pharmacodynamic effects in humans.
View Article and Find Full Text PDFBackground: Interleukin-2 (IL-2) plays a pivotal role in immune homeostasis due to its ability to stimulate numerous lymphocyte subsets including natural killer (NK) cells, effector CD4 and CD8 T cells, and regulatory T cells (T). Low concentrations of IL-2 induce signaling through the high-affinity IL-2 receptor (IL-2R) comprised of IL-2Rα, IL-2Rβ, and common γ chain (γ), preferentially expressed on T. Higher concentrations of IL-2 are necessary to induce signaling through the intermediate-affinity IL-2R, composed of IL-2Rβ and γ, expressed on memory CD8 T cells and NK cells.
View Article and Find Full Text PDFBacterial tRNA adenosine deaminases (TadAs) catalyze the hydrolytic deamination of adenosine to inosine at the wobble position of tRNA(Arg2), a process that enables this single tRNA to recognize three different arginine codons in mRNA. In addition, inosine is also introduced at the wobble position of multiple eukaryotic tRNAs. The genes encoding these deaminases are essential in bacteria and yeast, demonstrating the importance of their biological activity.
View Article and Find Full Text PDFThe TDP-vancosaminyltransferase GtfD catalyzes the attachment of L-vancosamine to a monoglucosylated heptapeptide intermediate during the final stage of vancomycin biosynthesis. Glycosyltransferases from this and similar antibiotic pathways are potential tools for the design of new compounds that are effective against vancomycin resistant bacterial strains. We have determined the X-ray crystal structure of GtfD as a complex with TDP and the natural glycopeptide substrate at 2.
View Article and Find Full Text PDFDuring the biosynthesis of the vancomycin-class antibiotic chloroeremomycin, TDP-epi-vancosaminyltransferase GtfA catalyzes the attachment of 4-epi-vancosamine from a TDP donor to the beta-OHTyr-6 of the aglycone cosubstrate. Glycosyltransferases from this pathway are potential tools for the combinatorial design of new antibiotics that are effective against vancomycin-resistant bacterial strains. These enzymes are members of the GT-B glycosyltransferase superfamily, which share a homologous bidomain topology.
View Article and Find Full Text PDFAnalogs of the glycopeptide antibiotics vancomycin and teicoplanin with alterations in one or both sugar moieties of the disaccharide have been prepared by tandem action of the vancomycin pathway glycosyltransferases GtfE and GtfD. All four regioisomers (2-, 3-, 4-, 6-) of TDP-deoxyglucoses and UDP/TDP-aminoglucoses were prepared, predominantly by action of D-glucopyranosyl-1-phosphate thymidylyltransferase, E(p). GtfE transferred the deoxyglucoses or aminoglucoses onto the 4-OH of 4-hydroxyphenylglycine of both the vancomycin and teicoplanin aglycone scaffolds.
View Article and Find Full Text PDFBecause teicoplanin and vancomycin are the last line of defense for many bacterial infections, the emergence of resistance to glycopeptide antibiotics in enterococci and streptococci has aroused concern. Despite their similarity in terms of structure and mechanism of action, vancomycin induces the expression of genes that leads to bacterial resistance, and teicoplanin does not. We have used a combination of chemical and enzymatic methods to produce sets of vancomycin and teicoplanin analogues that allow us to consider whether the aglycon, the carbohydrate, or other parts of these molecules stimulate VanB resistance.
View Article and Find Full Text PDFThe vancomycin class of antibiotics is regarded as the last line of defence against Gram-positive bacteria. The compounds used clinically are very complex organic molecules and are made by fermentation. The biosynthesis of these is complex and fascinating.
View Article and Find Full Text PDF