Publications by authors named "Heather C Allen"

Yttria-stabilized zirconia (YSZ) is found in a wide range of applications, from solid-oxide fuel cells to medical devices and implants. A molecular-level understanding of the hydration of YSZ surfaces is essential for optimizing its performance and durability in these applications. Nevertheless, only a limited amount of literature is available about the surface hydration of YSZ single crystals.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the interactions and hydration characteristics of hydrated trivalent metal nitrate salts (Fe(NO3)·9H2O and Al(NO3)·9H2O) using advanced spectroscopic techniques like Raman and sum frequency generation (SFG) spectroscopy across various frequency ranges.
  • Key findings include the effects of Lewis acidity of the metal ions on the spectral properties, specifically how it impacts the splitting and frequency shifts of nitrate bands, as well as highlighting unique solvation environments in solution.
  • Interestingly, aluminum nitrate disrupts surface water structure more significantly than iron nitrate, despite aluminum being a weaker Lewis acid, suggesting that aluminum's unique properties lead to more pronounced surface solvation effects.
View Article and Find Full Text PDF

Surfactant monolayers at sea spray aerosol (SSA) surfaces regulate various atmospheric processes including gas transfer, cloud interactions, and radiative properties. Most experimental studies of SSA employ a simplified surfactant mixture of long-chain fatty acids (LCFAs) as a proxy for the sea surface microlayer or SSA surface. However, medium-chain fatty acids (MCFAs) make up nearly 30% of the FA fraction in nascent SSA.

View Article and Find Full Text PDF

The interaction between nucleotide molecules and lipid molecules plays important roles in cell activities, but the molecular mechanism is very elusive. In the present study, a small but noticeable interaction between the negatively charged phosphatidylethanolamine (PE) and Guanosine monophosphate (GMP) molecules was observed from the PE monolayer at the air/water interface. As shown by the sum frequency generation (SFG) spectra and Pi-A isotherm of the PE monolayer, the interaction between the PE and GMP molecules imposes very small changes to the PE molecules.

View Article and Find Full Text PDF

The interaction of NO with organic interfaces is critical in the development of NO sensing and trapping technologies, and equally so to the atmospheric processing of marine and continental aerosol. Recent studies point to the importance of surface oxygen groups in these systems, however the role of specific functional groups on the microscopic level has yet to be fully established. In the present study, we aim to provide fundamental information on the interaction and potential binding of NO at atmospherically relevant organic interfaces that may also help inform innovation in NO sensing and trapping development.

View Article and Find Full Text PDF

The liquid structure of systems wherein water is limited in concentration or through geometry is of great interest in various fields such as biology, materials science, and electrochemistry. Here, we present a combined polarized Raman and molecular dynamics investigation of the structural changes that occur as water is added incrementally to propylene carbonate (PC), a polar, aprotic solvent that is important in lithium-ion batteries. Polarized Raman spectra of PC solutions were collected for water mole fractions 0.

View Article and Find Full Text PDF

Mass spectrometry is a ubiquitous technique capable of complex chemical analysis. The fragmentation patterns that appear in mass spectrometry are an excellent target for artificial intelligence methods to automate and expedite the analysis of data to identify targets such as functional groups. To develop this approach, we trained models on electron ionization (a reproducible hard fragmentation technique) mass spectra so that not only the final model accuracies but also the reasoning behind model assignments could be evaluated.

View Article and Find Full Text PDF

The chemistry and structure of the air-ocean interface modulate biogeochemical processes between the ocean and atmosphere and therefore impact sea spray aerosol properties, cloud and ice nucleation, and climate. Protein macromolecules are enriched in the sea surface microlayer and have complex adsorption properties due to the unique molecular balance of hydrophobicity and hydrophilicity. Additionally, interfacial adsorption properties of proteins are of interest as important inputs for ocean climate modeling.

View Article and Find Full Text PDF

This work summarizes a theoretical analysis of the perturbation on Raman spectra in aqueous NaCl and KCl solutions with the aim to detect ion pairs. The experimental Raman spectra, both polarized and depolarized, are perturbed by these ions to a comparable extent or somewhat less by KCl than NaCl. This result appears to be contrary to the molecular dynamics (MD) simulation showing that the isolated and separated ions of KCl should have a larger perturbation than NaCl, as the solvation shell of K is larger than that of Na.

View Article and Find Full Text PDF

The triggered self-assembly of surfactants into organized layers at aqueous interfaces is important for creating adaptive nanosystems and understanding selective ion extraction. While these transformations require molecular recognition, the underlying driving forces are modified by the local environment in ways that are not well understood. Herein, we investigate the role of ion binding and ion hydration using cyanosurf, which is composed of the cyanostar macrocycle, and its binding to anions that are either size-matched or mis-matched and either weakly or highly hydrated.

View Article and Find Full Text PDF

Specific interactions of yttrium and lanthanum ions with a fatty acid Langmuir monolayer were investigated using vibrational sum frequency spectroscopy. The trivalent ions were shown to interact with the charged form of the carboxylic acid group from nanomolar concentrations (<300 nM). Analysis of the spectral features from both the symmetric and the asymmetric carboxylate modes reveals the presence of at least three distinct coordination structures linked to specific binding configurations.

View Article and Find Full Text PDF

The temperature-dependent hydration structure of long-chain fatty acids and alcohols at air-water interfaces has great significance in the fundamental interactions underlying ice nucleation in the atmosphere. We present an integrated theoretical and experimental study of the temperature-dependent vibrational structure and electric field character of the immediate hydration shells of fatty alcohol and acid headgroups. We use a combination of surface-sensitive infrared reflection-absorption spectroscopy (IRRAS), surface potentiometry, and molecular dynamics simulations to elucidate detailed molecular structures of the octadecanoic acid and octadecanol (stearic acid and stearyl alcohol) headgroup hydration shells at room temperature and near freezing.

View Article and Find Full Text PDF

The binding of group II metal cations such as Ca and Mg has been largely categorized as electrostatic or ionic using carboxylate symmetric and asymmetric stretching frequency assignments that have been historically used with little regard for the solvation environment of aqueous solutions. However, given the importance of these cations and their binding mechanisms related to biological function and in revealing surface enrichment factors for ocean to marine aerosol transfer, it is imperative that a deeper understanding be sought to include hydration effects. Here, infrared reflection-absorption and Raman spectra for surface and solution phase carboxylate binding information, respectively, are compared against bare (unbound) carboxylate and bidentate Zn:carboxylate spectral signatures.

View Article and Find Full Text PDF

Saccharides comprise a significant mass fraction of organic carbon in sea spray aerosol (SSA), but the mechanisms through which saccharides are transferred from seawater to the ocean surface and eventually into SSA are unclear. It is hypothesized that saccharides cooperatively adsorb to other insoluble organic matter at the air/sea interface, known as the sea surface microlayer (SSML). Using a combination of surface-sensitive infrared reflection-absorption spectroscopy and all-atom molecular dynamics simulations, we demonstrate that the marine-relevant, anionic polysaccharide alginate co-adsorbs to an insoluble palmitic acid monolayer via divalent cationic bridging interactions.

View Article and Find Full Text PDF

Surface-sensitive vibrational spectroscopy is a common tool for measuring molecular organization and intermolecular interactions at interfaces. Peak intensity ratios are typically used to extract molecular information from one-dimensional spectra but vibrational coupling between surfactant molecules can manifest as signal depletion in one-dimensional spectra. Through a combination of experiment and theory, we demonstrate the emergence of vibrational exciton delocalization in infrared reflection-absorption spectra of soluble and insoluble surfactants at the air/water interface.

View Article and Find Full Text PDF

Fourier transform infrared spectroscopy (FTIR) is a ubiquitous spectroscopic technique. Spectral interpretation is a time-consuming process, but it yields important information about functional groups present in compounds and in complex substances. We develop a generalizable model via a machine learning (ML) algorithm using convolutional neural networks (CNNs) to identify the presence of functional groups in gas-phase FTIR spectra.

View Article and Find Full Text PDF

Complementing the microscopic picture of the surface structure of electrolyte solutions set out by previous theoretical and experimental studies, the ionizing surface potential technique offers a unique approach to quantifying the impact of aqueous inorganic ions upon the interfacial electric field of the air-aqueous interface. In this Feature Article, we review the vulnerability of theoretical and empirically derived χ values as a normative reference for aqueous ion surface potentials. Instead, we recognize and evaluate aqueous ion surface potentials relative to well-known ionic surfactants cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS).

View Article and Find Full Text PDF

Ions at the two sides of the plasma membrane maintain the transmembrane potential, participate in signaling, and affect the properties of the membrane itself. The extracellular leaflet is particularly enriched in phosphatidylcholine lipids and under the influence of Na, Ca, and Cl ions. In this work, we combined molecular dynamics simulations performed using state-of-the-art models with vibrational sum frequency generation (VSFG) spectroscopy to study the effects of these key ions on the structure of dipalmitoylphosphatidylcholine.

View Article and Find Full Text PDF

There is a critical need for receptors that are designed to enhance anion binding selectivity at aqueous interfaces in light of the growing importance of separation technologies for environmental sustainability. Here, we conducted the first study of anion binding selectivity across a series of prevalent inorganic oxoanions and halides that bind to a positively charged guanidinium receptor anchored to an aqueous interface. Vibrational sum frequency generation spectroscopy and infrared reflection absorption spectroscopy studies at the water-air interface reveal that the guanidinium receptor binds to an oxoanion series in the order SO > HPO > NO > NO while harboring very weak interactions with the halides in the order I > Cl ≈ Br.

View Article and Find Full Text PDF

Ice nucleating particles (INPs) influence weather and climate by their effect on cloud phase state. Fatty alcohols present within aerosol particles confer a potentially important source of ice nucleation activity to sea spray aerosol produced in oceanic regions. However, their interactions with other aerosol components and the influence on freezing were previously largely unknown.

View Article and Find Full Text PDF

We probed tandem aldol condensations of sixteen -hydroxyacetophenones, carrying electron-withdrawing and -donating groups at positions 4 and 5, using five molar equivalents of SiCl in anhydrous ethanol. Substrates carrying electron-withdrawing groups (EWGs) (0 < ∑σ > 0.63) populated the equilibria with isospiropyrans (12-74% yield), while those carrying electron-donating groups (EDGs) (∑σ < -0.

View Article and Find Full Text PDF

The selectivities and driving forces governing phosphate recognition by charged receptors at prevalent aqueous interfaces is unexplored relative to the many studies in homogeneous solutions. Here we report on electrostatic binding versus hydrogen-bond-assisted electrostatic binding of phosphate (HPO) for two important receptor classes in the unique microenvironment of the air-water interface. We find that the methylated ammonium receptor () is dominated by electrostatic binding to phosphate anions and fails to be selective for phosphate binding over chloride, whereas the highly phosphate-selective guanidinium receptor () provides synergistic hydrogen-bonding and electrostatic interactions.

View Article and Find Full Text PDF

In the presence of SiCl4, three molecules of 5'-bromo-2'-hydroxyacetophenone underwent an unexpected tandem aldol condensation to give a novel isospiropyran switch (69%), with X-ray crystallography confirming its structure. The strong Brønsted acid CH3SO3H turned the colorless isospiropyran into its protonated and open form possessing red color. This process was reversed using the Et3N base, with the acid/base toggling repeatable for at least six times (UV-Vis).

View Article and Find Full Text PDF

Iron is the most abundant transition metal in the earth's crust and is important for the proper functioning of many technological and natural processes. Despite the importance, a complete microscopic understanding of the hydration of ferric ions and water mediated ion pairing has not been realized. Hydrated Fe(iii) is difficult to study due to the process of complexation to the anion and hydrolysis of the hydrating water molecules leading to a heterogeneous solution with diverse speciation.

View Article and Find Full Text PDF

Aqueous solutions of FeCl have been widely studied to shed light on a number of processes from dissolution, mineralization, biology, electrocatalysis, corrosion, to microbial biomineralization. Yet there are little to no molecular level studies of the air-liquid FeCl interface. Here, both aqueous and glycerol FeCl solution surfaces are investigated with polarized vibrational sum frequency generation (SFG) spectroscopy.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc6tdd0dgn616fqunptt0un2ljma78fav): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once