The peptide hormone ghrelin is produced in cardiomyocytes and acts through the myocardial growth hormone secretagogue receptor (GHSR) to promote cardiomyocyte survival. Administration of ghrelin may have therapeutic effects on post-myocardial infarction (MI) outcomes. Therefore, there is a need to develop molecular imaging probes that can track the dynamics of GHSR in health and disease to better predict the effectiveness of ghrelin-based therapeutics.
View Article and Find Full Text PDFOxygen-15 (β+, t = 122 s) radiolabeled diatomic oxygen, in conjunction with positron emission tomography, is the gold standard to quantitatively measure the metabolic rate of oxygen consumption in the living human brain. We present herein a protocol for safe and effective delivery of [O]O over 200 m to a human subject for inhalation. A frugal quality control testing procedure was devised and validated.
View Article and Find Full Text PDFBackground: Left-sided breast cancer patients receiving adjuvant radiotherapy are at risk for coronary artery disease, and/or radiation mediated effects on the microvasculature. Previously our laboratory demonstrated in canines with hybrid 18FDG/PET a progressive global inflammatory response during the initial one year following treatment. In this study, the objective is to evaluate corresponding changes in perfusion, in the same cohort, where resting myocardial blood flow (MBF) was quantitatively measured.
View Article and Find Full Text PDFOur purpose was to investigate the utility of F-FDG PET/MRI and serial blood work to detect early inflammatory responses and cardiac functionality changes at 1 mo after radiation therapy (RT) in patients with left-sided breast cancer. Fifteen left-sided breast cancer patients who enrolled in the RICT-BREAST study underwent cardiac PET/MRI at baseline and 1 mo after standard RT. Eleven patients received deep-inspiration breath-hold RT, whereas the others received free-breathing RT.
View Article and Find Full Text PDFThe gold standard for imaging the cerebral metabolic rate of oxygen (CMRO) is positron emission tomography (PET); however, it is an invasive and complex procedure that also requires correction for recirculating O-HO and the blood-borne activity. We propose a noninvasive reference-based hybrid PET/magnetic resonance imaging (MRI) method that uses functional MRI techniques to calibrate O-O-PET data. Here, PET/MR imaging of oxidative metabolism (PMROx) was validated in an animal model by comparison to PET-alone measurements.
View Article and Find Full Text PDFWe quantitatively investigate the influence of image registration, using open-source software (3DSlicer), on kinetic analysis (Tofts model) of dynamic contrast enhanced MRI of early-stage breast cancer patients. We also show that registration computation time can be reduced by reducing the percent sampling (PS) of voxels used for estimation of the cost function. DCE-MRI breast images were acquired on a 3T-PET/MRI system in 13 patients with early-stage breast cancer who were scanned in a prone radiotherapy position.
View Article and Find Full Text PDFBackground: Simultaneous cardiovascular imaging with positron emission tomography (PET) and magnetic resonance imaging (MRI) requires tools such as radio frequency (RF) phased arrays to achieve high temporal and spatial resolution in the MRI, as well as accurate quantification of PET. Today, high-density phased arrays (> 16 channels) used for cardiovascular PET/MRI are not designed to achieve low PET attenuation, and correcting the PET attenuation they cause requires off-line reconstruction, extra time and resources.
Purpose: Motivated by previous work assessing the MRI performance of a novel prospectively designed 32-channel phased array, this study assessed the PET image quality with this array in place.
Purpose: To determine the effect of dose fractionation and time delay post-neoadjuvant stereotactic ablative radiotherapy (SABR) on dynamic contrast-enhanced (DCE)-MRI parameters in early stage breast cancer patients.
Materials And Methods: DCE-MRI was acquired in 17 patients pre- and post-SABR. Five patients were imaged 6-7 days post-21 Gy/1fraction (group 1), six 16-19 days post-21 Gy/1fraction (group 2), and six 16-18 days post-30 Gy/3 fractions every other day (group 3).
Background And Purpose: This study aimed to determine the effects of reducing the dose of contrast agent (CA) in a DCE-MRI scan on inter- and intra-observer variability in the context of MRI-guided target volume delineation for stereotactic body radiation therapy of early stage breast cancer patients. This is in hopes of reducing risks to patients due to findings of residual CA in brain and bone.
Materials And Methods: Twenty-three patients receiving neoadjuvant radiation therapy were enrolled.
Purpose: In a pig model of acute myocardial infarction (AMI), we validated a functional computed tomography (CT) technique for concomitant assessment of myocardial edema and ischemia through extravscualar contrast distribution volume (ECDV) and myocardial perfusion (MP) measurements from a single dynamic imaging session using a single contrast bolus injection.
Methods: In seven pigs, balloon catheter was used to occlude the distal left anterior descending artery for one hour followed by reperfusion. CT and cardiac magnetic resonance (CMR) imaging studies were acquired on 3 days and 12 ± 3 day post ischemic insult.