The role of PPM1D mutations in de novo gliomagenesis has not been systematically explored. Here we analyze whole genome sequences of 170 pediatric high-grade gliomas and find that truncating mutations in PPM1D that increase the stability of its phosphatase are clonal driver events in 11% of Diffuse Midline Gliomas (DMGs) and are enriched in primary pontine tumors. Through the development of DMG mouse models, we show that PPM1D mutations potentiate gliomagenesis and that PPM1D phosphatase activity is required for in vivo oncogenesis.
View Article and Find Full Text PDFLow-dose methotrexate (MTX) is a first-line therapy for the treatment of arthritis. However, there is considerable interindividual variability in MTX exposure following standard dosing. Polymorphisms in SLCO1B1 significantly effect MTX clearance, altering therapeutic response.
View Article and Find Full Text PDFBackground: Diffuse intrinsic pontine gliomas (DIPGs) are highly lethal childhood brain tumors. Their unique genetic makeup, pathological heterogeneity, and brainstem location all present challenges to treatment. Developing mouse models that accurately reflect each of these distinct features will be critical to advance our understanding of DIPG development, progression, and therapeutic resistance.
View Article and Find Full Text PDF