Many current gridded surface meteorological datasets are inadequate for quantifying near-surface spatiotemporal variability because they do not fully represent the impacts of land surface heterogeneity. Of note, explicit representation of the spatial structure and magnitude of local urban warming are usually lacking. Here we enhance the representation of spatial meteorological variability over urban areas in the conterminous United States (CONUS) by employing the High-Resolution Land Data Assimilation System (HRLDAS), which accounts for the fine-scale impacts of spatiotemporally varying land surfaces on weather.
View Article and Find Full Text PDFExtreme heat events are occurring more frequently and with greater intensity due to climate change. They result in increased heat stress to populations causing human health impacts and heat-related deaths. The urban environment can also exacerbate heat stress because of man-made materials and increased population density.
View Article and Find Full Text PDFAir pollutant accumulations during wintertime persistent cold air pool (PCAP) events in mountain valleys are of great concern for public health worldwide. Uncertainties associated with the simulated meteorology under stable conditions over complex terrain hinder realistic simulations of air quality using chemical transport models. We use the Community Multiscale Air Quality (CMAQ) model to simulate the gaseous and particulate species for 1 month in January 2011 during the Persistent Cold Air Pool Study (PCAPS) in the Salt Lake Valley (SLV), Utah (USA).
View Article and Find Full Text PDFWintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area.
View Article and Find Full Text PDFBackground: The effect of heatwaves on adverse birth outcomes is not well understood and may vary by how heatwaves are defined. The study aims to examine acute associations between various heatwave definitions and preterm and early-term birth.
Methods: Using national vital records from 50 metropolitan statistical areas (MSAs) between 1982 and 1988, singleton preterm (< 37 weeks) and early-term births (37-38 weeks) were matched (1:1) to controls who completed at least 37 weeks or 39 weeks of gestation, respectively.
Ambient fine particulate matter less than 2.5 μm in aerodynamic diameter (PM) has been linked to various adverse health outcomes. PM arises from both natural and anthropogenic sources, and PM concentrations can vary over space and time.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
April 2019
Motor vehicles are major sources of fine particulate matter (PM), and the PM from mobile vehicles is associated with adverse health effects. Traditional methods for estimating source impacts that employ receptor models are limited by the availability of observational data. To better estimate temporally and spatially resolved mobile source impacts on PM, we developed an approach based on a method that uses elemental carbon (EC), carbon monoxide (CO), and nitrogen oxide (NO) measurements as an indicator of mobile source impacts.
View Article and Find Full Text PDFBright surfaces across the western U.S. lead to uncertainties in satellite derived aerosol optical depth () where is typically overestimated.
View Article and Find Full Text PDFInt J Environ Res Public Health
June 2017
The use of solid biomass fuels in cookstoves has been associated with chronic health impacts that disproportionately affect women worldwide. Solid fuel stoves that use wood, plant matter, and cow dung are commonly used for household cooking in rural Bangladesh. This study investigates the immediate effects of acute elevated cookstove emission exposures on pulmonary function.
View Article and Find Full Text PDFThe spatial distribution of chemical compounds and concentration of reactive mercury (RM), defined as the sum of gaseous oxidized mercury (GOM) and <3 μm particulate bound mercury (PBM), are poorly characterized. The objective of this study was to understand the chemistry, concentration, and spatial and temporal distribution of GOM at adjacent locations (12 km apart) with a difference in elevation of ∼1000 m. Atmospheric GOM measurements were made with passive and active samplers using membranes, and at one location, a Tekran mercury measurement system was used.
View Article and Find Full Text PDFInvestigations of ambient air pollution health effects rely on complete and accurate spatiotemporal air pollutant estimates. Three methods are developed for fusing ambient monitor measurements and 12 km resolution chemical transport model (CMAQ) simulations to estimate daily air pollutant concentrations across Georgia. Temporal variance is determined by observations in one method, with the annual mean CMAQ field providing spatial structure.
View Article and Find Full Text PDFBackground: Previous epidemiologic studies suggest associations between preterm birth and ambient air pollution.
Objective: We investigated associations between 11 ambient air pollutants, estimated by combining Community Multiscale Air Quality model (CMAQ) simulations with measurements from stationary monitors, and risk of preterm birth (< 37 weeks of gestation) in the U.S.
Cold air pools (CAPs) are stagnant stable air masses that form in valleys and basins in the winter. Low wintertime insolation limits convective mixing, such that pollutant concentrations can build up within the CAP when pollutant sources are present. In the western United States, wintertime CAPs often persist for days or weeks.
View Article and Find Full Text PDFThis paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States-Mexico border During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14-30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g.
View Article and Find Full Text PDFA Bayesian source apportionment (SA) method is developed to provide source impact estimates and associated uncertainties. Bayesian-based ensemble averaging of multiple models provides new source profiles for use in a chemical mass balance (CMB) SA of fine particulate matter (PM2.5).
View Article and Find Full Text PDF