We present an in situ cryo-electron microscopy (cryoEM) study of mixed poly(acrylic acid) (PAA)/polystyrene (PS) brush-grafted 67 nm silica nanoparticles in organic and aqueous solvents. These organic-inorganic nanoparticles are predicted to be environmentally responsive and adopt distinct brush layer morphologies in different solvent environments. Although the self-assembled morphology of mixed PAA/PS brush-grafted particles has been studied previously in a dried state, no direct visualization of microphase separation was achieved in the solvent environment.
View Article and Find Full Text PDFTransient receptor potential (TRP) proteins are a large family of polymodal nonselective cation channels. The TRP vanilloid (TRPV) subfamily consists of six homologous members with diverse functions. TRPV1-TRPV4 are nonselective cation channels proposed to play a role in nociception, while TRPV5 and TRPV6 are involved in epithelial Ca²⁺ homeostasis.
View Article and Find Full Text PDFWe investigated the effects of sample preparation and of the exposure to an electron beam on particles in cryo-electron tomographs. Various virus particles with icosahedral symmetry were examined, allowing a comparison of symmetrically related components that should be identical in structure but might be affected differently by these imaging artifacts. Comparison of tomographic reconstructions with previously determined structures established by an independent method showed that neither freezing nor electron beam exposure produced a significant amount of shrinkage along the z axis (thickness).
View Article and Find Full Text PDFThe Podoviridae phage C1 was one of the earliest isolated bacteriophages and the first virus documented to be active against streptococci. The icosahedral and asymmetric reconstructions of the virus were calculated using cryo-electron microscopy. The capsid protein has an HK97 fold arranged into a T = 4 icosahedral lattice.
View Article and Find Full Text PDFFlaviviruses assemble as fusion-incompetent immature particles and subsequently undergo conformational change leading to release of infectious virions. Flavivirus infections also produce combined 'mosaic' particles. Here, using cryo-electron tomography, we report that mosaic particles of dengue virus type 2 had glycoproteins organized into two regions of mature and immature structure.
View Article and Find Full Text PDFMany flaviviruses are significant human pathogens, with the humoral immune response playing an essential role in restricting infection and disease. CR4354, a human monoclonal antibody isolated from a patient, neutralizes West Nile virus (WNV) infection at a postattachment stage in the viral life-cycle. Here, we determined the structure of WNV complexed with Fab fragments of CR4354 using cryoelectron microscopy.
View Article and Find Full Text PDFDuring dengue virus replication, an incomplete cleavage of the envelope glycoprotein prM, generates a mixture of mature (prM-less) and prM-containing, immature extracellular particles. In this study, sequential immunoprecipitation and cryoelectron microscopy revealed a third type of extracellular particles, the partially mature particles, as the major prM-containing particles in a dengue serotype 2 virus. Changes in the proportion of viral particles in the pr-M junction mutants exhibiting altered levels of prM cleavage suggest that the partially mature particles may represent an intermediate subpopulation in the virus maturation pathway.
View Article and Find Full Text PDFChikungunya virus (CHIKV) has infected millions of people in Africa, Europe and Asia since this alphavirus reemerged from Kenya in 2004. The severity of the disease and the spread of this epidemic virus present a serious public health threat in the absence of vaccines or antiviral therapies. Here, we describe a new vaccine that protects against CHIKV infection of nonhuman primates.
View Article and Find Full Text PDFDuring cell entry of flaviviruses, low endosomal pH triggers the rearrangement of the viral surface glycoproteins to a fusion-active state that allows the release of the infectious RNA into the cytoplasm. In this work, West Nile virus was complexed with Fab fragments of the neutralizing mAb E16 and was subsequently exposed to low pH, trapping the virions in a pre-fusion intermediate state. The structure of the complex was studied by cryo-electron microscopy and provides the first structural glimpse of a flavivirus fusion intermediate near physiological conditions.
View Article and Find Full Text PDFFlaviviruses are a group of human pathogens causing severe encephalitic or hemorrhagic diseases that include West Nile, dengue and yellow fever viruses. Here, using X-ray crystallography we have defined the structure of the flavivirus cross-reactive antibody E53 that engages the highly conserved fusion loop of the West Nile virus envelope glycoprotein. Using cryo-electron microscopy, we also determined that E53 Fab binds preferentially to spikes in noninfectious, immature flavivirions but is unable to bind significantly to mature virions, consistent with the limited solvent exposure of the epitope.
View Article and Find Full Text PDFChilo iridescent virus (CIV) is a large (approximately 1850 A diameter) insect virus with an icosahedral, T=147 capsid, a double-stranded DNA (dsDNA) genome, and an internal lipid membrane. The structure of CIV was determined to 13 A resolution by means of cryoelectron microscopy (cryoEM) and three-dimensional image reconstruction. A homology model of P50, the CIV major capsid protein (MCP), was built based on its amino acid sequence and the structure of the homologous Paramecium bursaria chlorella virus 1 Vp54 MCP.
View Article and Find Full Text PDFIntracellular cleavage of immature flaviviruses is a critical step in assembly that generates the membrane fusion potential of the E glycoprotein. With cryo-electron microscopy we show that the immature dengue particles undergo a reversible conformational change at low pH that renders them accessible to furin cleavage. At a pH of 6.
View Article and Find Full Text PDFThe monoclonal antibody 1A1D-2 has been shown to strongly neutralize dengue virus serotypes 1, 2 and 3, primarily by inhibiting attachment to host cells. A crystal structure of its antigen binding fragment (Fab) complexed with domain III of the viral envelope glycoprotein, E, showed that the epitope would be partially occluded in the known structure of the mature dengue virus. Nevertheless, antibody could bind to the virus at 37 degrees C, suggesting that the virus is in dynamic motion making hidden epitopes briefly available.
View Article and Find Full Text PDF