Publications by authors named "Heather A Ely"

 Posterior fossa meningiomas are surgically challenging tumors that are associated with high morbidity and mortality. We sought to investigate the anatomical distribution of clinically actionable mutations in posterior fossa meningioma to facilitate identifying patients amenable for systemic targeted therapy trials.  Targeted sequencing of clinically targetable , , and mutations was performed in 61 posterior fossa meningioma using Illumina NextSeq 500 to a target depth of >500 × .

View Article and Find Full Text PDF

Progressive meningiomas that have failed surgery and radiation have a poor prognosis and no standard therapy. While meningiomas are more common in females overall, progressive meningiomas are enriched in males. We performed a comprehensive molecular characterization of 169 meningiomas from 53 patients with progressive/high-grade tumors, including matched primary and recurrent samples.

View Article and Find Full Text PDF

Background: Recent studies have reported mutations in the telomerase reverse transcriptase promoter (p) in meningiomas. We sought to determine the frequency, clonality and clinical significance of telomere gene alterations in a cohort of patients with progressive/higher-grade meningiomas.

Methods: We characterized 64 temporally- and regionally-distinct specimens from 26 WHO grade III meningioma patients.

View Article and Find Full Text PDF

Targeted therapy combined with companion diagnostics has led to the advancement of next-generation sequencing (NGS) for detection of molecular alterations. However, using a diagnostic test to identify patient populations with low prevalence molecular alterations, such as gene rearrangements, poses efficiency, and cost challenges. To address this, we have developed a 2-step diagnostic test to identify NTRK1, NTRK2, NTRK3, ROS1, and ALK rearrangements in formalin-fixed paraffin-embedded clinical specimens.

View Article and Find Full Text PDF

Despite extensive studies on GnRH regulation of the gonadotropin subunit genes, very little is known about mechanism of induction of intermediary immediate early genes, such as c-Fos, that are direct targets of GnRH signaling and that upon induction, activate transcription of gonadotropin genes. Although c-Fos is induced by a variety of stimuli in other cell types, in the gonadotropes, only GnRH induces c-Fos and through it FSHβ. Thus, understanding the specificity of c-Fos induction by GnRH will provide insight into GnRH regulation of FSHβ gene expression.

View Article and Find Full Text PDF

GnRH and activin independently and synergistically activate transcription of the FSH beta-subunit gene, the subunit that provides specificity and is the limiting factor in the synthesis of the mature hormone. This synergistic interaction, as determined by two-way ANOVA, is specific for FSHbeta and may, therefore, contribute to differential expression of the two gonadotropin hormones, which is critical for the reproductive cycle. We find that the cross-talk between the GnRH and activin signaling pathways occurs at the level of p38 MAPK, because the synergy is dependent on p38 MAPK activity, which is activated by GnRH, and activin cotreatment augments p38 activation by GnRH.

View Article and Find Full Text PDF