Publications by authors named "Heather A Drummond"

Background: Increased circulating bilirubin attenuates angiotensin (Ang) II-induced hypertension and improves renal hemodynamics. However, the intrarenal mechanisms that mediate these effects are not known. The goal of the present study was to test the hypothesis that bilirubin generation in the renal medulla plays a protective role against Ang II-induced hypertension.

View Article and Find Full Text PDF

Introduction: Degenerin proteins, such as βENaC and ASIC2, have been implicated in cardiovascular function. However, their role in metabolic syndrome have not been studied. To begin to assess this interaction, we evaluated the impact of a high fat diet (HFD) on mice lacking normal levels of ASIC2 (ASIC2) and βENaC (βENaC).

View Article and Find Full Text PDF

The monocyte-macrophage system plays an important role in phagocytosis of pathogens and cellular debris following infection or tissue injury in several pathophysiological conditions. We examined ENaC/ASIC subunit transcript expression and the importance of select subunits in migration of bone marrow derived monocytes (freshly isolated) and macrophages (monocytes differentiated in culture). We also examined the effect of select subunit deletion on macrophage phenotype.

View Article and Find Full Text PDF

Migration of monocytes-macrophages plays an important role in phagocytosis of pathogens and cellular debris in a variety of pathophysiological conditions. Although epithelial Na channels (ENaCs) are required for normal migratory responses in other cell types, their role in macrophage migration signaling is unknown. To address this possibility, we determined whether ENaC message is present in several peripheral blood monocyte cell populations and tissue-resident macrophages in healthy humans using the Human Protein Atlas database (www.

View Article and Find Full Text PDF

Preeclampsia (PE) is associated with adverse cerebrovascular effects during and following parturition including stroke, small vessel disease, and vascular dementia. A potential contributing factor to the cerebrovascular dysfunction is the loss of cerebral blood flow (CBF) autoregulation. Autoregulation is the maintenance of CBF to meet local demands with changes in perfusion pressure.

View Article and Find Full Text PDF

In independent studies, our laboratory has shown the importance of the degenerin proteins β-epithelial Na channel (βENaC) and acid-sensing ion channel 2 (ASIC2) in pressure-induced constriction (PIC) in renal interlobar arteries. Most, but not all, of the PIC response is abolished in mice lacking normal levels of βENaC or in ASIC2-null mice, indicating that the functions of βENaC and ASIC2 cannot fully compensate for the loss of the other. Degenerin proteins are known to associate and form heteromeric channels in expression systems, but whether they interact biochemically and functionally in vascular smooth muscle cells is unknown.

View Article and Find Full Text PDF

Loss of pressure-induced vasoconstriction increases susceptibility to renal and cerebral vascular injury. Favored paradigms underlying initiation of the response include transient receptor potential channels coupled to G protein-coupled receptors or integrins as transducers. Degenerin channels may also mediate the response.

View Article and Find Full Text PDF

Background: Pressure-induced constriction (PIC) is inherent to small arteries and arterioles, in which intraluminal pressure-induced vascular smooth muscle cell stretch elicits vasoconstriction. Degenerin (Deg) proteins, such as beta-epithelial Na+ channel (βENaC), have been studied in the PIC response because they are evolutionarily linked to known mechanosensors. While loss of Deg function phenotypes are plentiful, a gain-of-function phenotype has not been studied.

View Article and Find Full Text PDF

Preeclampsia affects 5-8% of pregnancies and is characterized by hypertension, placental ischemia, neurological impairment, and an increase in circulating inflammatory cytokines, including Interleukin-17 (IL17). While placental ischemia has also been shown to impair cerebrovascular function, it is not known which placental-associated factor(s) drive this effect. The purpose of this study was to examine the effects of IL17 on cerebrovascular function during pregnancy.

View Article and Find Full Text PDF

Preeclampsia (PE), a hypertensive disorder, occurs in 3% to 8% of pregnancies in the United States and affects over 200,000 women and newborns per year. The United States has seen a 25% increase in the incidence of PE, largely owing to increases in risk factors, including obesity and cardiovascular disease. Although the etiology of PE is not clear, it is believed that impaired spiral artery remodeling of the placenta reduces perfusion, leading to placental ischemia.

View Article and Find Full Text PDF

Pressure-induced constriction (PIC) is an inherent response of small arteries and arterioles in which increases in intraluminal pressure evoke vasoconstriction. It is a critical mechanism of blood flow autoregulation in the kidney and brain. Degenerin (Deg) and transient receptor potential (Trp) protein families have been implicated in transduction of PIC because of evolutionary links to mechanosensing in the nematode and fly.

View Article and Find Full Text PDF

Degenerin proteins, such as the beta epithelial Na channel (βENaC), are essential in the intracellular signaling of pressure-induced constriction, an important vascular smooth muscle cell (VSMC) function. While certain cytokines reduce ENaC protein in epithelial tissue, it is unknown if interleukin-17 (IL-17), a potent pro-inflammatory cytokine, directly mediates changes in membrane-associated βENaC in VSMCs. Therefore, we tested the hypothesis that exposure to IL-17 reduces βENaC in VSMCs through canonical mitogen-activated protein kinase (MAPK) signaling pathways.

View Article and Find Full Text PDF

Preeclampsia is a pregnancy-related disorder characterized by hypertension, vascular dysfunction and an increase in circulating inflammatory factors including the cytokine, tumor necrosis factor-α (TNF-α). Studies have shown that placental ischemia is associated with ) increased circulating TNF-α, ) attenuated pressure-induced cerebral vascular tone, and ) suppression of β-epithelial Na channel (βENaC) protein in cerebral vessels. In addition to its role in epithelial Na and water transport, βENaC is an essential signaling element in transduction of pressure-induced (aka "myogenic") constriction, a critical mechanism of blood flow autoregulation.

View Article and Find Full Text PDF

Background: Placental ischemia and hypertension, characteristic features of preeclampsia, are associated with impaired cerebral blood flow (CBF) autoregulation and cerebral edema. However, the factors that contribute to these cerebral abnormalities are not clear. Several lines of evidence suggest that angiotensin II can impact cerebrovascular function; however, the role of the renin angiotensin system in cerebrovascular function during placental ischemia has not been examined.

View Article and Find Full Text PDF

Heme oxygenase (HO) plays an important role in the cardiovascular system. It is involved in many physiological and pathophysiological processes in all organs of the cardiovascular system. From the regulation of blood pressure and blood flow to the adaptive response to end-organ injury, HO plays a critical role in the ability of the cardiovascular system to respond and adapt to changes in homeostasis.

View Article and Find Full Text PDF

We determined whether deficiency of neuronal SOCS3 (suppressor of cytokine signaling 3)-a potential negative regulator of leptin signaling-amplifies the chronic effects of leptin on food intake, energy expenditure, glucose, and blood pressure (BP) and protects against adverse cardiometabolic effects of obesity. BP and heart rate were recorded by telemetry, and oxygen consumption (VO) was monitored in 22-week-old mice with nervous system SOCS3 deficiency (SOCS3-Nestin-Cre) and control mice (SOCS3) fed normal or high-fat-high-fructose diet from 6 to 22 weeks of age. Compared with controls, SOCS3-Nestin-Cre mice had lower plasma glucose (124±7 versus 146±10 mg/dL), consumed less food (3.

View Article and Find Full Text PDF

Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of leptin receptor signaling and may contribute to leptin resistance in diet-induced obesity. Although PTP1B inhibition has been suggested as a potential weight loss therapy, the role of specific neuronal PTP1B signaling in cardiovascular and metabolic regulation and the importance of sex differences in this regulation are still unclear. In this study, we investigated the impact of proopiomelanocortin (POMC) neuronal PTP1B deficiency in cardiometabolic regulation in male and female mice fed a high-fat diet (HFD).

View Article and Find Full Text PDF

Acid-sensing ion channel (ASIC) proteins form extracellular proton-gated, cation-selective channels in neurons and vascular smooth muscle cells and are proposed to act as extracellular proton sensors. However, their importance to vascular responses under conditions associated with extracellular acidosis, such as strenuous exercise, is unclear. Therefore, the purpose of this study was to determine if one ASIC protein, ASIC1a, contributes to extracellular proton-gated vascular responses and exercise tolerance.

View Article and Find Full Text PDF

ANG II has many biological effects in renal physiology, particularly in Ca handling in the regulation of fluid and solute reabsorption. It involves the systemic endocrine renin-angiotensin system (RAS), but tissue and intracrine ANG II are also known. We have shown that ANG II induces heterodimerization of its AT and AT receptors (ATR and ATR) to stimulate sarco(endo)plasmic reticulum Ca-ATPase (SERCA) activity.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease is the most rapidly growing form of liver disease and if left untreated can result in non-alcoholic steatohepatitis, ultimately resulting in liver cirrhosis and failure. Biliverdin reductase A (BVRA) is a multifunctioning protein primarily responsible for the reduction of biliverdin to bilirubin. Also, BVRA functions as a kinase and transcription factor, regulating several cellular functions.

View Article and Find Full Text PDF

Cerebrovascular complications and increased risk of encephalopathies are characteristic of preeclampsia and contribute to 40% of preeclampsia/eclampsia-related deaths. Circulating tumor necrosis factor-α (TNF-α) is elevated in preeclamptic women, and infusion of TNF-α into pregnant rats mimics characteristics of preeclampsia. While this suggests that TNF-α has a mechanistic role to promote preeclampsia, the impact of TNF-α on the cerebral vasculature during pregnancy remains unclear.

View Article and Find Full Text PDF

Pressure-induced constriction (also known as the "myogenic response") is an important mechanodependent response in small renal arteries and arterioles. The response is initiated by vascular smooth muscle cell (VSMC) stretch due to an increase in intraluminal pressure and leads to vasoconstriction. The myogenic response has two important roles as a mechanism of local blood flow autoregulation and protection against systemic blood pressure-induced microvascular damage.

View Article and Find Full Text PDF

Previous studies from our laboratory have suggested that degenerin proteins contribute to myogenic constriction, a mechanism of blood flow regulation and protection against pressure-dependent organ injury, in renal vessels. The goal of the present study was to determine the importance of one family member, acid-sensing ion channel 2 (ASIC2), in myogenic constriction of renal interlobar arteries, myogenic regulation of whole kidney blood flow, renal injury, and blood pressure using ASIC2(+/+), ASIC2(+/-), and ASIC2(-/-) mice. Myogenic constriction in renal interlobar arteries was impaired in ASIC2(+/-) and ASIC2(-/-) mice, whereas constriction to KCl/phenylephrine was unchanged.

View Article and Find Full Text PDF

According to the cancer stem-like cell (CSC) hypothesis, neoplastic clones are maintained by a small fraction of cells with stem cell properties. Also, melanoma resistance to chemo- and radiotherapy is thought to be attributed to melanoma stem-like cells (MSCs). Caffeic acid phenethyl ester (CAPE) is a bioactive molecule, whose antitumor activity is approved in different tumor types.

View Article and Find Full Text PDF