This study establishes PYROXD1 variants as a cause of early-onset myopathy and uses biospecimens and cell lines, yeast, and zebrafish models to elucidate the fundamental role of PYROXD1 in skeletal muscle. Exome sequencing identified recessive variants in PYROXD1 in nine probands from five families. Affected individuals presented in infancy or childhood with slowly progressive proximal and distal weakness, facial weakness, nasal speech, swallowing difficulties, and normal to moderately elevated creatine kinase.
View Article and Find Full Text PDFObjective: To describe the clinical and genetic characteristics of presynaptic congenital myasthenic syndrome secondary to biallelic variants in SLC18A3.
Methods: Individuals from 2 families were identified with biallelic variants in SLC18A3, the gene encoding the vesicular acetylcholine transporter (VAChT), through whole-exome sequencing.
Results: The patients demonstrated features seen in presynaptic congenital myasthenic syndrome, including ptosis, ophthalmoplegia, fatigable weakness, apneic crises, and deterioration of symptoms in cold water for patient 1.
Variants in ACTA1, which encodes α-skeletal actin, cause several congenital myopathies, most commonly nemaline myopathy. Autosomal recessive variants comprise approximately 10% of ACTA1 myopathy. All recessive variants reported to date have resulted in loss of skeletal α-actin expression from muscle and severe weakness from birth.
View Article and Find Full Text PDFThe activity and mechanism of action of two microtubule-stabilising agents, laulimalide and peloruside A, were investigated in Saccharomyces cerevisiae. In contrast to paclitaxel, both compounds displayed growth inhibitory activity in yeast with wild type TUB2 and were susceptible to the yeast pleiotropic drug efflux pumps, as evidenced by the increased sensitivity of a pump transcription factor knockout strain, pdr1Δpdr3Δ. Laulimalide (IC50=3.
View Article and Find Full Text PDFBackground: The origin of infantile haemangioma (IH) remains enigmatic. A primitive mesodermal phenotype origin of IH with the ability to differentiate down erythropoietic and terminal mesenchymal lineages has recently been demonstrated.
Aims: To investigate the expression of human embryonic stem cell (hESC) markers in IH and to determine whether IH-derived cells have the functional capacity to form teratoma in vivo.