Publications by authors named "Heath M Guay"

B cells generated in the bone marrow of adult mice enter the periphery as transitional B cells and subsequently differentiate into one of two phenotypically and functionally distinct subsets, marginal zone (MZ) or follicular (Fo) B cells. Recent reports indicate, however, that in response to environmental cues, such as lymphopenia, mature Fo B cells can change to display phenotypic markers characteristic of MZ B cells. Previously, we found that splenic B cells transferred to SCID mice responded to polyoma virus (PyV) infection with T cell-independent (TI) IgM and IgG secretion, reducing the viral load and protecting mice from the lethal effect of the infection.

View Article and Find Full Text PDF

We have examined processes leading to the spontaneous development of autoimmune inflammatory arthritis in transgenic mice containing CD4+ T cells targeted to a nominal Ag (hemagglutinin (HA)) and coexpressing HA driven by a MHC class II promoter. Despite being subjected to multiple tolerance mechanisms, autoreactive CD4+ T cells accumulate in the periphery of these mice and promote systemic proinflammatory cytokine production. The majority of mice spontaneously develop inflammatory arthritis, which is accompanied by an enhanced regional immune response in lymph nodes draining major joints.

View Article and Find Full Text PDF

Although many studies have investigated the requirement for CD4(+) T cell help for CD8(+) T cell responses to acute viral infections that are fully resolved, less is known about the role of CD4(+) T cells in maintaining ongoing CD8(+) T cell responses to persistently infecting viruses. Using mouse polyoma virus (PyV), we asked whether CD4(+) T cell help is required to maintain antiviral CD8(+) T cell and humoral responses during acute and persistent phases of infection. Though fully intact during acute infection, the PyV-specific CD8(+) T cell response declined numerically during persistent infection in MHC class II-deficient mice, leaving a small antiviral CD8(+) T cell population that was maintained long term.

View Article and Find Full Text PDF

This study describes a method for increasing the immunogenicity of influenza virus vaccines by exploiting the natural anti-Gal antibody to effectively target vaccines to antigen-presenting cells (APC). This method is based on enzymatic engineering of carbohydrate chains on virus envelope hemagglutinin to carry the alpha-Gal epitope (Gal alpha 1-3Gal beta 1-4GlcNAc-R). This epitope interacts with anti-Gal, the most abundant antibody in humans (1% of immunoglobulins).

View Article and Find Full Text PDF

Development of long-term humoral immunity is a major goal of vaccination, but the mechanisms involved in the formation of long-term Ab responses are still being determined. In this study, we identify a previously unknown requirement for MyD88, an adaptor molecule that mediates signals at most TLRs, for the generation of long-term humoral immunity during live virus infection. Polyoma virus-infected MyD88 knockout mice generated strong acute T cell-dependent antiviral IgM and IgG responses and developed germinal centers.

View Article and Find Full Text PDF

Although somatically mutated autoantibodies are characteristic of many autoimmune diseases, the processes that can lead to their development remain poorly understood. We have examined the formation of autoreactive memory B cells in PevHA mice, which express the influenza virus PR8 hemagglutinin (HA) as a transgenic membrane bound neo-self-Ag. Using a virus immunization strategy, we show that PR8 HA-specific memory B cell formation can occur in PevHA mice, even though a major subset of PR8 HA-specific B cells is negatively selected from the primary repertoire.

View Article and Find Full Text PDF

Hypergammaglobulinemia and production of autoantibodies occur during many viral infections, and studies have suggested that viral antigen-presenting B cells may become polyclonally activated by CD4 T cells in vivo in the absence of viral engagement of the BCR. However, we have reported that CD4 cells in lymphocytic choriomengitis virus (LCMV)-infected mice kill adoptively transferred B cells coated with LCMV class II peptides. We report here that most of the surviving naïve B cells presenting class II MHC peptides undergo an extensive differentiation process involving both proliferation and secretion of antibodies.

View Article and Find Full Text PDF

Autoreactive B cells are not completely purged from the primary B cell repertoire, and whether they can be prevented from maturation into memory B cells has been uncertain. We show here that a population of B cells that dominates primary immune responses of BALB/c mice to influenza virus A/PR/8/34 hemagglutinin (HA) are negatively selected in transgenic mice expressing PR8 HA as an abundant membrane-bound Ag (HACII mice). However, a separate population of B cells that contains precursors of memory B cells is activated by PR8 virus immunization and is subsequently negatively selected during the formation of the memory response.

View Article and Find Full Text PDF