Am J Speech Lang Pathol
January 2025
Purpose: Current research supports favorable outcomes using online continuing education, and speech-language pathologists (SLPs) report a lack of training in palliative care. This study aimed to determine the effectiveness of online palliative care training on the knowledge and comfort level of medical SLPs.
Method: In the multiple-baseline across participants method, 10 medical SLPs completed online training modules provided by the Center to Advance Palliative Care.
Peripheral nerve myelination is a complex event resulting from spatially and temporally regulated reciprocal interactions between the neuron and myelin-forming Schwann cells. The dynamic process and the protein functional modules and networks that operate throughout the myelination process are poorly understood because of a lack of methodologies suitable for observing specific changes in the Schwann cell/neuron-unit. The identification of the precise roles for the proteins participating in the functional modules and networks that participate in the myelination process is hindered by the cellular and molecular complexity of the nervous tissue itself.
View Article and Find Full Text PDFAfter a primary lytic infection at the epithelia, herpes simplex virus type 1 (HSV-1) enters the innervating sensory neurons and translocates to the nucleus, where it establishes a quiescent latent infection. Periodically, the virus can reactivate and the progeny viruses spread back to the epithelium. Here, we introduce an embryonic mouse dorsal root ganglion (DRG) culture system, which can be used to study the mechanisms that control the establishment, maintenance and reactivation from latency.
View Article and Find Full Text PDF2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is a quantitatively major enzyme in myelin, where it localizes to the non-compact regions and is bound to the membrane surface. Although its catalytic activity in vitro has been characterized, the physiological function and in vivo substrate of CNPase remain unknown. Especially the N-terminal domain has been poorly characterized; previously, we have shown it is involved in CNPase dimerization and RNA binding.
View Article and Find Full Text PDFAlthough a mutation in the NF1 gene is the only factor required to initiate the neurocutaneous-skeletal neurofibromatosis 1 (NF1) syndrome, the pathoetiology of the multiple manifestations of this disease in different organ systems seems increasingly complex. The wide spectrum of different clinical phenotypes and their development, severity, and prognosis seem to result from the cross talk between numerous cell types, cell signaling networks, and cell-extracellular matrix interactions. The bi-allelic inactivation of the NF1 gene through a "second hit" seems to be of crucial importance to the development of certain manifestations, such as neurofibromas, café-au-lait macules, and glomus tumors.
View Article and Find Full Text PDFCutaneous neurofibromas are the hallmarks of neurofibromatosis type 1 (NF1). They are composed of multiple cell types, and traditionally they are believed to arise from small nerve tributaries of the skin. A key finding in the context of this view has been that subpopulations of tumor Schwann cells harbor biallelic inactivation of the NF1 gene (NF1(-/-)).
View Article and Find Full Text PDFMyelin basic protein (MBP) is present between the cytoplasmic leaflets of the compact myelin membrane in both the peripheral and central nervous systems, and characterized to be intrinsically disordered in solution. One of the best-characterized protein ligands for MBP is calmodulin (CaM), a highly acidic calcium sensor. We pulled down MBP from human brain white matter as the major calcium-dependent CaM-binding protein.
View Article and Find Full Text PDFTight junctions (TJs) form physical barriers in various tissues and regulate paracellular transport of ions, water, and molecules. Myelinating Schwann cells form highly organized structures, including compact myelin, nodes of Ranvier, paranodal regions, Schmidt-Lanterman incisures, periaxonal cytoplasmic collars, and mesaxons. Autotypic TJs are formed in non-compacted myelin compartments between adjacent membrane lamellae of the same Schwann cell.
View Article and Find Full Text PDFThe established protocols for in vitro studies of peripheral nerve myelination with rat embryonic dorsal root ganglia (DRG) and postnatal Schwann cell cocultures do not work with mouse cells. Consequently, the full potential of this model, which would allow to perform cell type-specific, mixed genotype cocultures without cross-breeding the animals, cannot be exploited. We determined the conditions required to promote full myelination in cocultures of pre-purified mouse embryonic DRG and neonatal Schwann cells, and present a method which consistently yields 50-200 mature myelin sheaths/culture.
View Article and Find Full Text PDFMost studies of peripheral nerve myelination using culture models are performed with dorsal root ganglion neurons and Schwann cells pre-purified from the rat. The potential of this model is severely compromised by the lack of rat myelin mutants and the published protocols work poorly with mouse cells, for which numerous myelin mutants are available. This is partly due to difficulties in obtaining sufficient quantities of myelination-competent mouse Schwann cells.
View Article and Find Full Text PDFThe temporo-spatial expression profiles of the myelin-associated glycoprotein (MAG) and galactosylcerebrosides (Gal-CBs) were analysed during Schwann cell differentiation and myelination in Schwann cell cultures and in dorsal root ganglion/Schwann cell cocultures. The temporal expression profiles demonstrate that the mechanisms triggering and regulating MAG and Gal-CBs are different and independent. They also provide further support for a role of MAG, but not Gal-CBs, in the establishment of the Schwann cell/axon interaction and in the formation of the primary mesaxon, while both MAG and Gal-CBs may participate in the further maturation of the mesaxon.
View Article and Find Full Text PDFSchistosoma japonicum glutathione S-transferase (SjGST) is a common fusion tag in recombinant protein production, and its 3-dimensional structure has been studied in the context of drug design. We have determined the crystal structure of non-fused SjGST complexed with glutathione, and compare it to complexes between glutathione and SjGST fusion proteins.
View Article and Find Full Text PDFIn peripheral nerves, groups of Schwann cell-axon units are isolated from the adjacent tissues by the perineurium, which creates a diffusion barrier responsible for the maintenance of endoneurial homeostasis. The perineurium is formed by concentric layers of overlapping, polygonal perineurial cells that form tight junctions at their interdigitating cell borders. In this study, employing indirect immunofluorescence and immunoelectron microscopy, we demonstrate that claudin-1 and -3, ZO-1, and occludin, but not claudin-2, -4, and -5, are expressed in the perineurium of adult human peripheral nerve.
View Article and Find Full Text PDFThe myelin-associated glycoprotein (MAG) possesses two isoforms, known as S-MAG and L-MAG. We followed the expression and localization of L-MAG in comparison to myelin basic protein (MBP) during myelination in dissociated embryonic rat brain cell cocultures. Using immunofluorescence microscopy, we observed L-MAG and MBP in oligodendrocyte (OL) cell bodies and processes before and at the onset of myelination.
View Article and Find Full Text PDFThe myelin-associated glycoprotein (MAG) is a transmembrane cell adhesion molecule participating in myelin formation and maintenance. Calcium-activated/-dependent proteolysis of myelin-associated glycoprotein by calpain and cathepsin L-like activities has already been detected in purified myelin fractions, producing a soluble fragment, called degraded (d)MAG, characterized by the loss of the transmembrane and cytoplasmic domains. Here, we demonstrate and analyze dMAG formation from pure human brain myelin-associated glycoprotein.
View Article and Find Full Text PDFBrain Res Mol Brain Res
February 2001
The myelin-associated glycoprotein (MAG) exists as two isoforms, differing only by their respective cytoplasmic domains, that have been suggested to function in the formation and maintenance of myelin. In the present study, a 50 kDa protein binding directly to the small MAG (S-MAG) cytoplasmic domain was detected and identified as tubulin, the core component of the microtubular cytoskeleton. In vitro, the S-MAG cytoplasmic domain slowed the polymerization rate of tubulin and co-purified with assembled microtubules.
View Article and Find Full Text PDFBrain Res Mol Brain Res
March 2000
The myelin-associated glycoprotein (MAG) is a cell adhesion molecule expressed by myelinating glia, existing as two isoforms that differ only by their cytoplasmic domains. We have studied the in vitro phosphorylation of recombinant rat MAG cytoplasmic domains by three kinases for which consensus sequences exist within this domain, revealing phosphorylation of the L-MAG-specific domain by protein kinase A (PKA). Phosphorylation of the L-MAG cytoplasmic domain by PKA was decreased in the presence of S100beta, providing a functional significance to the interaction between L-MAG and S100beta, and further indicating that L-MAG may play a role in myelinating glial cell signalling processes.
View Article and Find Full Text PDFBy imposing saltatory conduction on the nervous impulse, the principal role of the myelin sheath is to allow the faster propagation of action potentials along the axons which it surrounds. Peripheral nervous system (PNS) myelin is formed by the differentiation of the plasma membrane of Schwann cells. One of the biochemical characteristics that distinguishes myelin from other biological membranes is its high lipid-to-protein ratio.
View Article and Find Full Text PDFOften, the amount of RNA that can be isolated from a defined tissue is very small. A method consisting of nondenaturing polyacrylamide gel electrophoresis and silver staining is described that can be used to evaluate the concentration of very dilute RNA samples. The method is a good starting point for assays dealing with small amounts of RNA, such as semiquantitative reverse transcription polymerase chain reaction (RT-PCR), making it possible to perform parallel assays from similar amounts of total RNA when quantitation by other methods is too insensitive.
View Article and Find Full Text PDFThe Trembler mouse suffers from a dominantly inherited autosomal mutation that results in an abnormal myelination of the peripheral nervous system. Biochemical studies have shown that dysmyelination is the primary event, demyelination being a late-occurring process. The expression of myelin protein genes has been studied.
View Article and Find Full Text PDFThe myelin-associated glycoprotein is a transmembrane cell adhesion molecule expressed specifically by myelinating glial cells of the nervous system. Its two isoforms, whose amino acid sequences differ only by their respective cytoplasmic carboxy-terminal domains, are important for the formation and maintenance of a normal functional myelin sheath. In this study, by using recombinant proteins, we identify the cytoplasmic domain of the small isoform of the myelin-associated glycoprotein as a zinc-binding protein.
View Article and Find Full Text PDFThe Trembler mouse suffers from a dominantly inherited autosomal mutation that results in an abnormal myelination of the peripheral nervous system. Biochemical studies have shown that dysmyelination is the primary event, demyelination being a late-occurring process. The expression of myelin protein genes has been studied.
View Article and Find Full Text PDFThe myelin-associated glycoprotein is a transmembrane cell adhesion molecule expressed by myelinating glial cells of the nervous system. So far, only protein kinases have been reported to interact with the cytoplasmic domains of the two isoforms of the myelin-associated glycoprotein. We report here the identification of the first nonkinase intracellular ligand for the large isoform of the myelin-associated glycoprotein as the S100beta protein.
View Article and Find Full Text PDFThe myelin-associated glycoprotein (MAG) is a transmembrane protein of the immunoglobulin superfamily existing as two isoforms (L-MAG and S-MAG) that are differentially expressed by myelinating glial cells of the central and peripheral nervous systems, where MAG represents 1 and 0.1% of the total myelin proteins, respectively. The polypeptide chains of the two isoforms differ only by the carboxy terminus of their respective cytoplasmic domains, which most probably determine the isoform-specific functions.
View Article and Find Full Text PDF