Publications by authors named "Heang-Ping Chan"

Survival prediction post-cystectomy is essential for the follow-up care of bladder cancer patients. This study aimed to evaluate artificial intelligence (AI)-large language models (LLMs) for extracting clinical information and improving image analysis, with an initial application involving predicting five-year survival rates of patients after radical cystectomy for bladder cancer. Data were retrospectively collected from medical records and CT urograms (CTUs) of bladder cancer patients between 2001 and 2020.

View Article and Find Full Text PDF

Early diagnosis of lung cancer can significantly improve patient outcomes. We developed a Growth Predictive model based on the Wasserstein Generative Adversarial Network framework (GP-WGAN) to predict the nodule growth patterns in the follow-up LDCT scans. The GP-WGAN was trained with a training set (N = 776) containing 1121 pairs of nodule images with about 1-year intervals and deployed to an independent test set of 450 nodules on baseline LDCT scans to predict nodule images (GP-nodules) in their 1-year follow-up scans.

View Article and Find Full Text PDF
Article Synopsis
  • Innovation in medical imaging using AI and machine learning requires thorough data collection and algorithm improvements, along with careful evaluation of factors like bias and trustworthiness.
  • Successfully integrating AI/ML into clinical settings is challenging and hinges on addressing issues in model design, development, regulatory compliance, and stakeholder collaboration.
  • Tackling these complexities is essential not only for overcoming current obstacles but also for unlocking new opportunities in the field of radiology.
View Article and Find Full Text PDF

Purpose To evaluate the feasibility of leveraging serial low-dose CT (LDCT) scans to develop a radiomics-based reinforcement learning (RRL) model for improving early diagnosis of lung cancer at baseline screening. Materials and Methods In this retrospective study, 1951 participants (female patients, 822; median age, 61 years [range, 55-74 years]) (male patients, 1129; median age, 62 years [range, 55-74 years]) were randomly selected from the National Lung Screening Trial between August 2002 and April 2004. An RRL model using serial LDCT scans (S-RRL) was trained and validated using data from 1404 participants (372 with lung cancer) containing 2525 available serial LDCT scans up to 3 years.

View Article and Find Full Text PDF

. Digital breast tomosynthesis (DBT) has significantly improved the diagnosis of breast cancer due to its high sensitivity and specificity in detecting breast lesions compared to two-dimensional mammography. However, one of the primary challenges in DBT is the image blur resulting from x-ray source motion, particularly in DBT systems with a source in continuous-motion mode.

View Article and Find Full Text PDF

The adoption of artificial intelligence (AI) tools in medicine poses challenges to existing clinical workflows. This commentary discusses the necessity of context-specific quality assurance (QA), emphasizing the need for robust QA measures with quality control (QC) procedures that encompass (1) acceptance testing (AT) before clinical use, (2) continuous QC monitoring, and (3) adequate user training. The discussion also covers essential components of AT and QA, illustrated with real-world examples.

View Article and Find Full Text PDF
Article Synopsis
  • Accurately diagnosing severe COVID-19 lung infections is critical for timely oxygen treatment and hospitalization, as severe cases pose higher health risks and may lead to lasting lung damage requiring follow-up imaging.
  • Researchers developed deep learning neural network models using chest radiographs (CXR) to differentiate between severe and non-severe COVID-19 lung infections, utilizing a dataset of 5748 cases and 6193 images from various countries and institutions.
  • The performance of the models was assessed using an area under the receiver operating characteristic curve (AUC), with the Inception-v4 models achieving higher accuracy (AUC of 0.85-0.89) compared to the Inception-v1 models (AUC of 0.
View Article and Find Full Text PDF

. Digital breast tomosynthesis (DBT) is a quasi-three-dimensional breast imaging modality that improves breast cancer screening and diagnosis because it reduces fibroglandular tissue overlap compared with 2D mammography. However, DBT suffers from noise and blur problems that can lower the detectability of subtle signs of cancers such as microcalcifications (MCs).

View Article and Find Full Text PDF

Accurate survival prediction for bladder cancer patients who have undergone radical cystectomy can improve their treatment management. However, the existing predictive models do not take advantage of both clinical and radiological imaging data. This study aimed to fill this gap by developing an approach that leverages the strengths of clinical (C), radiomics (R), and deep-learning (D) descriptors to improve survival prediction.

View Article and Find Full Text PDF

Background: The noise in digital breast tomosynthesis (DBT) includes x-ray quantum noise and detector readout noise. The total radiation dose of a DBT scan is kept at about the level of a digital mammogram but the detector noise is increased due to acquisition of multiple projections. The high noise can degrade the detectability of subtle lesions, specifically microcalcifications (MCs).

View Article and Find Full Text PDF

A murine model of myelofibrosis in tibia was used in a co-clinical trial to evaluate segmentation methods for application of image-based biomarkers to assess disease status. The dataset (32 mice with 157 3D MRI scans including 49 test-retest pairs scanned on consecutive days) was split into approximately 70% training, 10% validation, and 20% test subsets. Two expert annotators (EA1 and EA2) performed manual segmentations of the mouse tibia (EA1: all data; EA2: test and validation).

View Article and Find Full Text PDF

Rapid advances in artificial intelligence (AI) and machine learning, and specifically in deep learning (DL) techniques, have enabled broad application of these methods in health care. The promise of the DL approach has spurred further interest in computer-aided diagnosis (CAD) development and applications using both "traditional" machine learning methods and newer DL-based methods. We use the term CAD-AI to refer to this expanded clinical decision support environment that uses traditional and DL-based AI methods.

View Article and Find Full Text PDF

Objective: Accurate segmentation of the lung nodule in computed tomography images is a critical component of a computer-assisted lung cancer detection/diagnosis system. However, lung nodule segmentation is a challenging task due to the heterogeneity of nodules. This study is to develop a hybrid deep learning (H-DL) model for the segmentation of lung nodules with a wide variety of sizes, shapes, margins, and opacities.

View Article and Find Full Text PDF

This study developed a recursive training strategy to train a deep learning model for nuclei detection and segmentation using incomplete annotation. A dataset of 141 H&E stained breast cancer pathologic images with incomplete annotation was randomly split into training/validation set and test set of 89 and 52 images, respectively. The positive training samples were extracted at each annotated cell and augmented with affine translation.

View Article and Find Full Text PDF

This observer study investigates the effect of computerized artificial intelligence (AI)-based decision support system (CDSS-T) on physicians' diagnostic accuracy in assessing bladder cancer treatment response. The performance of 17 observers was evaluated when assessing bladder cancer treatment response without and with CDSS-T using pre- and post-chemotherapy CTU scans in 123 patients having 157 pre- and post-treatment cancer pairs. The impact of cancer case difficulty, observers' clinical experience, institution affiliation, specialty, and the assessment times on the observers' diagnostic performance with and without using CDSS-T were analyzed.

View Article and Find Full Text PDF

The Abstract is intended to provide a concise summary of the study and its scientific findings. For AI/ML applications in medical physics, a problem statement and rationale for utilizing these algorithms are necessary while highlighting the novelty of the approach. A brief numerical description of how the data are partitioned into subsets for training of the AI/ML algorithm, validation (including tuning of parameters), and independent testing of algorithm performance is required.

View Article and Find Full Text PDF

Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging modality that can reduce false negatives and false positives in mass lesion detection caused by overlapping breast tissue in conventional two-dimensional (2D) mammography. The patient dose of a DBT scan is similar to that of a single 2D mammogram, while acquisition of each projection view adds detector readout noise. The noise is propagated to the reconstructed DBT volume, possibly obscuring subtle signs of breast cancer such as microcalcifications (MCs).

View Article and Find Full Text PDF

(1) Purpose: The objective was to evaluate CT perfusion and radiomic features for prediction of one year disease free survival in laryngeal and hypopharyngeal cancer. (2) Method and Materials: This retrospective study included pre and post therapy CT neck studies in 36 patients with laryngeal/hypopharyngeal cancer. Tumor contouring was performed semi-autonomously by the computer and manually by two radiologists.

View Article and Find Full Text PDF

Purpose: Transfer learning is commonly used in deep learning for medical imaging to alleviate the problem of limited available data. In this work, we studied the risk of feature leakage and its dependence on sample size when using pretrained deep convolutional neural network (DCNN) as feature extractor for classification breast masses in mammography.

Methods: Feature leakage occurs when the training set is used for feature selection and classifier modeling while the cost function is guided by the validation performance or informed by the test performance.

View Article and Find Full Text PDF

Purpose: Digital breast tomosynthesis (DBT) is a limited-angle tomographic breast imaging modality that can be used for breast cancer screening in conjunction with full-field digital mammography (FFDM) or synthetic mammography (SM). Currently, there are five commercial DBT systems that have been approved by the U.S.

View Article and Find Full Text PDF

Background Digital breast tomosynthesis (DBT) helps reduce recall rates and improve cancer detection compared with two-dimensional (2D) mammography but has a longer interpretation time. Purpose To evaluate the effect of DBT slab thickness and overlap on reader performance and interpretation time in the absence of 1-mm slices. Materials and Methods In this retrospective HIPAA-compliant multireader study of DBT examinations performed between August 2013 and July 2017, four fellowship-trained breast imaging radiologists blinded to final histologic findings interpreted DBT examinations by using a standard protocol (10-mm slabs with 5-mm overlap, 1-mm slices, synthetic 2D mammogram) and an experimental protocol (6-mm slabs with 3-mm overlap, synthetic 2D mammogram) with a crossover design.

View Article and Find Full Text PDF

Objectives: To compare radiologists' sensitivity, confidence level, and reading efficiency of detecting microcalcifications in digital breast tomosynthesis (DBT) at two clinically relevant dose levels.

Materials And Methods: Six 5-cm-thick heterogeneous breast phantoms embedded with a total of 144 simulated microcalcification clusters of four speck sizes were imaged at two dose modes by a clinical DBT system. The DBT volumes at the two dose levels were read independently by six MQSA radiologists and one fellow with 1-33 years (median 12 years) of experience in a fully-crossed counter-balanced manner.

View Article and Find Full Text PDF