ATP-dependent chromatin remodeling protein ATRX is an essential regulator involved in maintenance of DNA structure and chromatin state and regulation of gene expression during development. ATRX was originally identified as the monogenic cause of X-linked α-thalassemia mental retardation (ATR-X) syndrome. Affected individuals display a variety of developmental abnormalities and skeletal deformities.
View Article and Find Full Text PDFHeterozygous pathogenic variants in are associated with oligodontia-colorectal cancer syndrome (ODCRCS), a disorder characterized by oligodontia, colorectal cancer, and in some cases, sparse hair and eyebrows. We have identified four individuals with one of two , heterozygous variants (NM_004655.4:c.
View Article and Find Full Text PDFNeutrophils, pivotal cells of innate and adaptive immune responses, employ reactive oxygen species (ROS) to combat pathogens and control gene expression. Paracetamol (acetaminophen) is widely used as an analgesic and antipyretic medication, yet its precise mechanisms of action are not yet fully understood. Here, we investigate the impact of both ingested and in-vitro paracetamol on neutrophil ROS activity, using flow cytometry and antioxidant assays.
View Article and Find Full Text PDFGene therapy with Adeno-Associated Viral (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.
View Article and Find Full Text PDFCD2-Associated protein (CD2AP) is a candidate susceptibility gene for Alzheimer's disease, but its role in the mammalian central nervous system remains largely unknown. We show that CD2AP protein is broadly expressed in the adult mouse brain, including within cortical and hippocampal neurons, where it is detected at pre-synaptic terminals. Deletion of Cd2ap altered dendritic branching and spine density, and impaired ubiquitin-proteasome system activity.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI) type V is the second most common form of OI, distinguished by hyperplastic callus formation and calcification of the interosseous membranes, in addition to the bone fragility. It is caused by a recurrent, dominant pathogenic variant (c.-14C>T) in interferon-induced transmembrane protein 5 (IFITM5).
View Article and Find Full Text PDFSerum polyclonal free light chains (FLCs) levels are associated with overall survival in the general population, reflecting their utility as a biomarker of underlying immune activation and inflammation. Regular exercise is known to ameliorate low-grade inflammation in chronic diseases such as type 2 diabetes; however, the effects of different exercise training modalities on FLCs in adults with type 2 diabetes is unknown. This study investigated the effects of 9-month of aerobic, resistance or combined supervised exercise on serum FLCs in 164 patients with type 2 diabetes (age 58 ± 8 years; 63% female).
View Article and Find Full Text PDFTime-lapse microscopy for embryos is a non-invasive technology used to characterize early embryo development. This study employs time-lapse microscopy and machine learning to elucidate changes in embryonic growth kinetics with maternal aging. We analyzed morphokinetic parameters of embryos from young and aged C57BL6/NJ mice via continuous imaging.
View Article and Find Full Text PDFStem cell maintenance and differentiation can be regulated via the differential activity of transcription factors within stem cells and their progeny. For these factors to be active, they need to be transported from their site of synthesis in the cytoplasm into the nucleus. A tissue-specific requirement for factors involved in nuclear importation is a potential mechanism to regulate stem cell differentiation.
View Article and Find Full Text PDFCas9 transgenes can be employed for genome editing in mouse zygotes. However, using transgenic instead of exogenous Cas9 to produce gene-edited animals creates unique issues including ill-defined transgene integration sites, the potential for prolonged Cas9 expression in transgenic embryos, and increased genotyping burden. To overcome these issues, we generated mice harboring an oocyte-specific, Gdf9 promoter driven, Cas9 transgene (Gdf9-Cas9) targeted as a single copy into the Hprt1 locus.
View Article and Find Full Text PDFThe Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) remains a public health concern and a subject of active research effort. Development of pre-clinical animal models is critical to study viral-host interaction, tissue tropism, disease mechanisms, therapeutic approaches, and long-term sequelae of infection. Here, we report two mouse models for studying SARS-CoV-2: A knock-in mAce2 mouse that expresses a mouse-human hybrid form of the angiotensin-converting enzyme 2 (ACE2) receptor under the endogenous mouse Ace2 promoter, and a Rosa26 conditional knock-in mouse carrying the human ACE2 allele (Rosa26).
View Article and Find Full Text PDFBackground: High levels of physical activity are associated with reduced risk of the blood cancer multiple myeloma (MM). MM is preceded by the asymptomatic stages of monoclonal gammopathy of undetermined significance (MGUS) and smouldering multiple myeloma (SMM) which are clinically managed by watchful waiting. A case study (N = 1) of a former elite athlete aged 44 years previously indicated that a multi-modal exercise programme reversed SMM disease activity.
View Article and Find Full Text PDFObjectives: The National Health Service in England funds 12 months of weekly subcutaneous tocilizumab (qwTCZ) for patients with relapsing or refractory giant cell arteritis (GCA). During the COVID-19 pandemic, some patients were allowed longer treatment. We sought to describe what happened to patients after cessation of qwTCZ.
View Article and Find Full Text PDFSLC7A7 deficiency, or lysinuric protein intolerance (LPI), causes loss of function of the y+LAT1 transporter critical for efflux of arginine, lysine and ornithine in certain cells. LPI is characterized by urea cycle dysfunction, renal disease, immune dysregulation, growth failure, delayed bone age and osteoporosis. We previously reported that Slc7a7 knockout mice (C57BL/6×129/SvEv F2) recapitulate LPI phenotypes, including growth failure.
View Article and Find Full Text PDFViruses have evolved the ability to bind and enter cells through interactions with a wide variety of cell macromolecules. We engineered peptide-modified adeno-associated virus (AAV) capsids that transduce the brain through the introduction of de novo interactions with 2 proteins expressed on the mouse blood-brain barrier (BBB), LY6A or LY6C1. The in vivo tropisms of these capsids are predictable as they are dependent on the cell- and strain-specific expression of their target protein.
View Article and Find Full Text PDFGenome editing with CRISPR-associated (Cas) proteins holds exceptional promise for "correcting" variants causing genetic disease. To realize this promise, off-target genomic changes cannot occur during the editing process. Here, we use whole genome sequencing to compare the genomes of 50 Cas9-edited founder mice to 28 untreated control mice to assess the occurrence of S.
View Article and Find Full Text PDFThe development of oocytes occurs over a broad time frame, starting at the earliest stages of embryogenesis and continuing into adulthood. Conditional knockout technologies such as the Cre/loxP recombination system are useful for analyzing oocyte development at specific stages, but not every time frame has appropriate Cre drivers, for instance, during oocyte meiotic initiation through early prophase I in the embryo. Here, we generated a novel knockin mouse line that produces a bicistronic transcript from the endogenous Stra8 locus that includes a "self-cleaving" 2A peptide upstream of cre.
View Article and Find Full Text PDFEarly growth response 1 (EGR1) mediates transcriptional programs that are indispensable for cell division, differentiation, and apoptosis in numerous physiologies and pathophysiologies. Whole-body EGR1 knockouts in mice (Egr1 ) have advanced our understanding of EGR1 function in an in vivo context. To extend the utility of the mouse to investigate EGR1 responses in a tissue- and/or cell-type-specific manner, we generated a mouse model in which exon 2 of the mouse Egr1 gene is floxed by CRISPR/Cas9 engineering.
View Article and Find Full Text PDF