Video-based person re-identification (ReID) aims to exploit relevant features from spatial and temporal knowledge. Widely used methods include the part- and attention-based approaches for suppressing irrelevant spatial-temporal features. However, it is still challenging to overcome inconsistencies across video frames due to occlusion and imperfect detection.
View Article and Find Full Text PDFMulti-person pose estimation has been gaining considerable interest due to its use in several real-world applications, such as activity recognition, motion capture, and augmented reality. Although the improvement of the accuracy and speed of multi-person pose estimation techniques has been recently studied, limitations still exist in balancing these two aspects. In this paper, a novel knowledge distilled lightweight top-down pose network (KDLPN) is proposed that balances computational complexity and accuracy.
View Article and Find Full Text PDF