Environmental lipids are essential for fueling tumor energetics, but whether these exogenous lipids transported into cancer cells facilitate immune escape remains unclear. Here, we find that CD36, a transporter for exogenous lipids, promotes acute myeloid leukemia (AML) immune evasion. We show that, separately from its established role in lipid oxidation, CD36 on AML cells senses oxidized low-density lipoprotein (OxLDL) to prime the TLR4-LYN-MYD88-nuclear factor κB (NF-κB) pathway, and exogenous palmitate transfer via CD36 further potentiates this innate immune pathway by supporting ZDHHC6-mediated MYD88 palmitoylation.
View Article and Find Full Text PDFAntitumor activity of CD8+ T cells is potentially restrained by a variety of negative regulatory pathways that are triggered in the tumor microenvironment, yet, the exact mechanisms remain incompletely defined. Here, we report that intrinsic RIG-I in CD8+ T cells represents such a factor, as evidenced by observations that the tumor-restricting effect of endogenous or adoptively transferred CD8+ T cells was enhanced by intrinsic Rig-I deficiency or inhibition, with the increased accumulation, survival, and cytotoxicity of tumor-infiltrating CD8+ T cells. Mechanistically, T cell activation-induced RIG-I upregulation restrained STAT5 activation via competitive sequestering of HSP90.
View Article and Find Full Text PDFChemoresistance contributes to poor survival and high relapse risk in acute myeloid leukemia (AML). As a pro-inflammatory cytokine, interleukin-6 (IL-6) plays a vital role in the chemoresistance of malignancies. However, the underlying mechanisms of chemoresistance in AML have not been widely studied.
View Article and Find Full Text PDFChemotherapy can effectively reduce the leukemic burden and restore immune cell production in most acute myeloid leukemia (AML) cases. Nevertheless, endogenous immunosurveillance usually fails to recover after chemotherapy, permitting relapse. The underlying mechanisms of this therapeutic failure have remained poorly understood.
View Article and Find Full Text PDFExtranodal diffuse large B cell lymphoma (EN DLBCL) often leads to poor outcomes, while the underlying mechanism remains unclear. As immune imbalance plays an important role in lymphoma pathogenesis, we hypothesized that immune genes might be involved in the development of EN DLBCL. Ninety-three differentially expressed immune genes (DEIGs) were identified from 1168 differentially expressed genes (DEGs) between tumor tissues of lymph node DLBCL (LN DLBCL) and EN DLBCL patients in TCGA database.
View Article and Find Full Text PDFExtramedullary infiltration (EMI), as a concomitant symptom of acute myeloid leukemia (AML), is associated with low complete remission and poor prognosis in AML. However, the mechanism of EMI remains indistinct. Clinical trials showed that increased miR-29s were associated with a poor overall survival in AML [14].
View Article and Find Full Text PDFDespite that immune responses play important roles in acute myeloid leukemia (AML), immunotherapy is still not widely used in AML due to lack of an ideal target. Therefore, we identified key immune genes and cellular components in AML by an integrated bioinformatics analysis, trying to find potential targets for AML. Eighty-six differentially expressed immune genes (DEIGs) were identified from 751 differentially expressed genes (DEGs) between AML patients with fair prognosis and poor prognosis from the TCGA database.
View Article and Find Full Text PDFRetinoic acid inducible gene-I (Rig-I) has been well documented as a cytosolic pattern recognition receptor that can sense viral RNA ligands to initiate the interferon-mediated antiviral immunity. However, little is known about the biological behaviors of Rig-I devoid of viral infection. Herein, we investigated the roles of Rig-I in the regulation of cellular senescence.
View Article and Find Full Text PDFSecreted proteins provide crucial signals that have been implicated in the development of acute myeloid leukemia (AML) in the bone marrow microenvironment. Here we identify aberrant expressions of inflammatory and its receptor () in human and mouse mixed lineage leukemia-rearranged AML cells, which were further increased after exposure to chemotherapy. Interestingly, silencing of IL-17B or IL-17RB led to significant suppression of leukemic cell survival and disease progression .
View Article and Find Full Text PDFJMJD3, a stress-inducible H3K27 demethylase, plays a critical regulatory role in the initiation and progression of malignant hematopoiesis. However, how this histone modifier affects in a cell type-dependent manner remains unclear. Here, we show that in contrast to its oncogenic effect in preleukemia state and lymphoid malignancies, JMJD3 relieves the differentiation-arrest of certain subtypes (such as M2 and M3) of acute myeloid leukemia (AML) cells.
View Article and Find Full Text PDFInnate immunity activation by viral RNA-primed retinoid acid inducible gene-I (Rig-I) in CD4 T cells antagonizes TGFβ signaling to suppress the differentiation of regulatory T cells (Tregs). However, how viral RNA-unliganded Rig-I (apo-Rig-I) modulates Treg generation remains unclear. In this article, we show that, in the absence of viral infection, Treg differentiation of CD4 T cells was compromised, in the presence of increased generation of Th17 cells and overactivation of Stat3, a critical regulator tilting the Treg/Th17 cell balance.
View Article and Find Full Text PDFAll-trans retinoic acid (ATRA) and/or arsenic trioxide (ATO) administration leads to granulocytic maturation and/or apoptosis of acute promyelocytic leukemia (APL) cells mainly by targeting promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα). Yet, ~10-15% of APL patients are not cured by ATRA- and ATO-based therapies, and a potential failure of ATRA and ATO in completely reversing PML/RARα-driven oncogenic alterations has not been comprehensively examined. Here we characterized the in vivo primary responses of dysregulated genes in APL cells treated with ATRA and ATO using a GFP-labeled APL model.
View Article and Find Full Text PDFRetinoic acid inducible gene-I (RIG-I), named for the observation that its mRNA expression is highly upregulated in the progression of all-trans retinoic acid (ATRA)-induced maturation of acute promyelocytic leukemia (APL) cells, has been well documented as a pivotal virus-associated molecular pattern recognition receptor (PRR) responsible for triggering innate immunity. Upon recognizing viral RNA ligands, RIG-I experiences a series of programmed conformational changes and modifications that unleash its activity through the formation of complexes with various binding partners. Such partners include the mitochondria membrane-anchored protein IPS-1 (also named MAVS/VISA/Cardif) that activates both the IRF3/7 and NF-κB pathways.
View Article and Find Full Text PDFRetinoic acid (RA)-inducible gene I (RIG-I) is highly upregulated and functionally implicated in the RA-induced maturation of acute myeloid leukemia (AML) blasts. However, the underlying mechanism and the biological relevance of RIG-I expression to the maintenance of leukemogenic potential are poorly understood. Here, we show that RIG-I, without priming by foreign RNA, inhibits the Src-facilitated activation of AKT-mTOR in AML cells.
View Article and Find Full Text PDF