Publications by authors named "HeChun Xia"

Background: The circadian rhythm gene Brain and Muscle Arnt-like1 (Bmal1) acts as a transcription factor and plays a crucial role in oncogenesis and embryonic development. Bmal1 is notably overexpressed in various tumors, including glioma. However, the precise mechanisms underlying the elevated Bmal1 expression in glioma malignancy remain unclear.

View Article and Find Full Text PDF

Objective: High-grade glioma (HGG) patients frequently encounter treatment resistance and relapse, despite numerous interventions seeking enhanced survival outcomes yielding limited success. Consequently, this study, rooted in our prior research, aimed to ascertain whether leveraging circadian rhythm phase attributes could optimize radiotherapy results.

Methods: In this retrospective analysis, we meticulously selected 121 HGG cases with synchronized rhythms through Cosinor analysis.

View Article and Find Full Text PDF

Background: Lycium barbarum polysaccharide (LBP) is an active ingredient extracted from Lycium barbarum that inhibits neuroinflammation, and Lycium barbarum glycopeptide (LbGp) is a glycoprotein with immunological activity that was purified and isolated from LBP. Previous studies have shown that LbGp can regulate the immune microenvironment, but its specific mechanism of action remains unclear.

Aims: In this study, we aimed to explore the mechanism of action of LbGp in the treatment of spinal cord injury through metabolomics and molecular experiments.

View Article and Find Full Text PDF

Lycium barbarum polysaccharide (LBP) is a substance with various biological activities extracted from Lycium barbarum. LbGPs are peptidoglycans with a short peptide backbone and a complex, branched glycan moiety, which is further extracted and isolated from LBPs. Previous studies have shown that LbGP can inhibit cancer cell growth, but its specific mechanism is not completely clear.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) results in drastic dysregulation of microenvironmental metabolism during the acute phase, which greatly affects neural recovery. A better insight into the potential molecular pathways of metabolic dysregulation by multi-omics analysis could help to reveal targets that promote nerve repair and regeneration in the future.

Materials And Methods: We established the SCI model and rats were randomly divided into two groups: the acute-phase SCI (ASCI) group ( = 14, 3 days post-SCI) and the sham group with day-matched periods ( = 14, without SCI).

View Article and Find Full Text PDF

This network meta-analysis aimed to explore the effect of different drugs on mortality and neurological improvement in patients with traumatic brain injury (TBI), and to clarify which drug might be used as a more promising intervention for treating such patients by ranking. We conducted a comprehensive search from PubMed, Medline, Embase, and Cochrane Library databases from the establishment of the database to 31 January 2022. Data were extracted from the included studies, and the quality was assessed using the Cochrane risk-of-bias tool.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a traumatic event that can lead to neurodegeneration. Neuronal damage in the primary motor cortex (M1) can hinder motor function recovery after SCI. However, the exact mechanisms involved in neuronal damage after SCI remain incompletely understood.

View Article and Find Full Text PDF

Objective: This study investigates whether people with sleep disorders following traumatic brain injury exhibit altered intestinal flora. The changes may allow us to gain a better understanding of the role of intestinal flora in patients with sleep disorders after traumatic brain injury, which may give us insights into curing the sleep disorder after traumatic brain injury (TBI).

Method: We analyzed the intestinal microbial colony structure in the feces of the 28 patients in the normal sleep group and the sleep disorder group by 16SrDNAsequencing technology.

View Article and Find Full Text PDF

In this study, we employed multiple laboratory techniques to acknowledge the biological activities and processes of Per2 and Id3 in glioma. We analyzed TCGA and CGGA databases for seeking association among Per2, Id3, and clinical features in glioma. Immunohistochemistry and Western blot were used to detect protein expression levels.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a progressive neurodegenerative disease in addition to a traumatic event. Cognitive dysfunction following SCI has been widely reported in patients and animal models. However, the neuroanatomical changes affecting cognitive function after SCI, as well as the mechanisms behind these changes, have so far remained elusive.

View Article and Find Full Text PDF

Following spinal cord injury (SCI), the central nervous system undergoes significant reconstruction. The dynamic change in the interaction of the brain-spinal cord axis as well as in structure-function relations plays a vital role in the determination of neurological functions, which might have important clinical implications for the treatment and its efficacy evaluation of patients with SCI. Brain connectomes based on neuroimaging data is a relatively new field of research that maps the brain's large-scale structural and functional networks at rest.

View Article and Find Full Text PDF

Olfactory ensheathing cells (OECs) from the olfactory bulb (OB) and the olfactory mucosa (OM) have the capacity to repair nerve injury. However, the difference in the therapeutic effect between OB-derived OECs and OM-derived OECs remains unclear. In this study, we extracted OECs from OB and OM and compared the gene and protein expression profiles of the cells using transcriptomics and non-quantitative proteomics techniques.

View Article and Find Full Text PDF

To further understand the neurological changes induced by spinal cord injury (SCI) in its acute and subacute stages, we evaluated longitudinal changes in glucose and glutamate metabolism in the spinal cord and brain regions of a canine hemisection SCI model. [F]FDG and [N]NH positron-emission tomography (PET) with computed tomography (CT) was performed before SCI and at 1, 3, 7, 14, and 21 days after SCI. Spinal cord [F]FDG uptake increased and peaked at 3 days post SCI.

View Article and Find Full Text PDF

Olfactory ensheathing cell (OEC) transplantation has emerged as a promising therapy for spinal cord injury (SCI) repair. In the present study, we explored the possible mechanisms of OECs transplantation underlying neuroinflammation modulation. Spinal cord inflammation after intravenous OEC transplantation was detected and by translocator protein PET tracer [F]F-DPA.

View Article and Find Full Text PDF

Oxidative stress is a hallmark of secondary injury associated with spinal cord injury. Identifying stable and specific oxidative biomarkers is of important significance for studying spinal cord injury-associated secondary injury. Mature erythrocytes do not contain nuclei and mitochondria and cannot be transcribed and translated.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a common cause of disability, which often leads to sensorimotor cortex dysfunction above the spinal injury site. However, the cerebral regional effects on metabolic information after SCI have been little studied. Here, adult Sprague-Dawley rats were divided into acute and chronic treatment groups and sham groups with day-matched periods.

View Article and Find Full Text PDF

Glioblastoma is a highly malignant tumor that contains stem‑like cells known as glioma stem cells (GSCs), which lare associated with an increased risk of glioma occurrence, recurrence and poor prognosis. Circadian clock gene, period circadian clock 2 (PER2) expression has been revealed to be inhibited in various types of cancer. However, the precise role and potential mechanisms of PER2 in GSCs remains unclear.

View Article and Find Full Text PDF

Treatment failure occurs in more than 40% of advanced nasopharyngeal carcinoma (NPC) patients including local recurrence and distant metastasis due to chemoradioresistance. Circadian clock genes were identified as regulating cancer progression and chemoradiosensitivity in a time-dependent manner. A novel nanosystem can ensure the accumulation and controllable release of chemotherapeutic agents at the tumour site at a set time.

View Article and Find Full Text PDF

Traumatic spinal cord injury (SCI) is a devastating neurological disease for which an accurate, cost-effective prediction of motor function recovery is in pressing need. A plethora of neurochemical changes involved in the pathophysiological process of SCI may serve as a new source of biomarkers for patient outcomes. Five dogs were included in this study.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) is a clinically common, acute, critical cerebrovascular disease associated with high mortality. Here, we investigated the effects of electroacupuncture on early brain injury after SAH. We successfully established a Sprague-Dawley rat model of the SAH model, and randomly divided the rats into four groups: sham-operated group, SAH group, positive control group, and electroacupuncture group.

View Article and Find Full Text PDF

Cellular transplantation strategies utilizing intraspinal or intrathecal olfactory ensheathing cells (OECs) have been reported as beneficial for spinal cord injury (SCI). However, there are many disadvantages of these methods, including additional trauma to the spinal cord parenchyma and technical challenges. Therefore, we investigated the feasibility and potential benefits of intravenous transplantation of OECs in a rat hemisection SCI model.

View Article and Find Full Text PDF

Previous studies have shown that amentoflavone (AF) elicits anti-inflammatory and neuroprotective effects. To further investigate the effects of AF on the microglia cell line BV-2, proteomic analysis was performed to screen potential key regulators. The top 5 canonical pathways associated with AF treatment were EIF2 signaling, regulation of eIF4 and p70s6k signaling, mTOR signaling, protein ubiquitination pathway and phagosome maturation.

View Article and Find Full Text PDF

Background: In patients with traumatic brain injury (TBI), whether sleep disorder is associated with disturbances in molecular rhythmicity is unclear. This study aimed to investigate the relationship between abnormal sleep and regulation by circadian rhythms in patients with TBI.

Methods: We sampled buccal cells and human blood samples from patients with TBI diagnosed with sleep disorders and those with normal sleep and investigated differences in the expression levels of Clock, Per2, and Bmal1 between the 2 groups.

View Article and Find Full Text PDF