Publications by authors named "He-peng Ju"

Aims: Staphylococcus aureus (S. aureus) is the most common causative bacterial pathogen involved in promoting infection-induced osteomyelitis, a disease resulting in severe bone degradation. In this study, we aimed to identify the mechanism behind inhibition of osteoclast survival and differentiation by CHI3L1, a lectin previously reported to regulate S.

View Article and Find Full Text PDF

BACKGROUND The aim of this study was to investigate the proliferation, differentiation, and tube formation of human outgrowth endothelial progenitor cells (OECs) cultured with porous demineralized bone matrix (DBM) under a dynamic perfusion system in vitro. MATERIAL AND METHODS OECs were isolated, expanded, characterized, eGFP-transfected and seeded on DBM scaffold and cultured under static or dynamic perfusion conditions, and continuously observed under fluorescence microscope. DBM scaffolds were harvested on day six for RT-PCR and western blot assay to analyze the mRNA and protein expression level of CD34, VE-cadherin, and VEGF.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) entry is a sequential and multi-step process that includes receptor interactions followed by pH-dependent membrane fusion. Specific and conserved histidine residues on the viral envelope proteins are involved in most pH-induced virus entries. In the case of HCV, some conserved histidines on the E1 and E2 proteins have been investigated in HCV pseudotype particle (HCVpp) systems.

View Article and Find Full Text PDF

Fetal bovine serum (FBS), used normally as a basic cell culture supplement, inhibits influenza virus growth. However, the role of FBS in the regulation of hepatitis C virus (HCV) infection has not been studied extensively and remains largely unclear. We adopted the established cell-cultured HCV (HCVcc) isolated from the JFH-1 strain and two sets of solutions (cDMEM7.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) envelope glycoprotein E2 is involved in virus assembly and initial entry into host cells. The tertiary organization of the E2 ectodomain is mainly composed of domains I-III, followed by the stem (ST) region and transmembrane (TM) domain. The ST region is critical for reorganizing the envelope glycoproteins during the membrane fusion process.

View Article and Find Full Text PDF