After discovering new miRNAs, it is often difficult to determine their targets and effects on downstream protein expression. In situ hybridization (ISH) and immunohistochemistry (IHC) are two commonly used methods for clinical diagnosis and basic research. We used an optimized technique that simultaneously detects miRNAs, their binding targets and corresponding proteins on transferred serial formalin fixed paraffin embedded (FFPE) sections from patients.
View Article and Find Full Text PDFThe aim of this study was to evaluate the role of GATA4 in hypertrophy and survival functions of CT-1 in the heart, and to apply chemical inhibitor strategies to assess a possible interaction of signaling pathways involved in these processes. Expression of GATA4 was determined at the mRNA expression (polymerase chain reaction, PCR) and protein binding activity (electrophoretic mobility shift assays, EMSAs) levels. Myocardial apoptosis was detected using the in-situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method.
View Article and Find Full Text PDFZhonghua Xin Xue Guan Bing Za Zhi
August 2006
Objective: To investigate the effect of cardiotrophin-1 (CT-1) on the GATA4 expression and related signaling pathways (JAK-STAT3, ERK1/2 and PI3-K) in rat cardiomyocytes.
Methods: Using semi-quantitative RT-PCR and EMSA, we measured the dose and time dependent effects of CT-1 on GATA4 mRNA and binding activity in cultured rat cardiomyocytes. Parthenolide (a STAT inhibitor), U-0126 (an ERK inhibitor) and LY-294002 (a PI3-K inhibitor) alone or in combination were added to the culture medium to assess the role of above signaling pathways in CT-1 mediated effects.