Publications by authors named "He-You Han"

Activated doxorubicin (DOX) often has severe systemic toxicity and side effects due to its inability to distinguish tumor cells from normal cells, which seriously affects the prognosis of patients. Here, we synthesized an inactivated a DOX prodrug that could be selectively activated by a light-induced caspase-3 enzyme in the tumor site. In the absence of light, this uniformly dispersed nanoparticle avoided the unnecessary toxicity under physiological conditions.

View Article and Find Full Text PDF

Despite the great success in clinical magnetic resonance imaging (MRI), Gd-based contrast agents still suffer from low proton relaxation efficiency, rapid metabolic clearance as well as poor sensitivity. In this work, we designed a matrix metalloproteinase-2 (MMP-2) responsive chimeric peptide for dual-stage-amplified MRI and precise photodynamic therapy. Both in vitro and in vivo studies indicated that this chimeric peptide could self-assembly into spherical nanoparticles at physiological condition with r value of 28.

View Article and Find Full Text PDF

In this work, the feasibility of a novel sensitive electrochemiluminescence aptasensor for the detection of lysozyme using Ru(bpy)-Silica@Poly-L-lysine-Au (RuSiNPs@PLL-Au) nanocomposites labeling as an indicator was demonstrated. The substrate electrode of the aptasensor was prepared by depositing gold nanoparticles (AuNPs) on 3D graphene-modified electrode. The lysozyme binding aptamer (LBA) was attached to the 3D graphene/AuNPs electrode through gold-thiol affinity, hybridized with a complementary single-strand DNA (CDNA) of the lysozyme aptamer labeled by RuSiNPs@PLL-Au as an electrochemiluminescence intensity amplifier.

View Article and Find Full Text PDF

Both excess dosages of drug and unwanted drug carrier can lead to severe side effects as well as the failure of tumor therapy. Here, an Fe -gallic acid based drug delivery system is designed for efficient monitoring of drug release in tumor. Fe and polyphenol gallic acid can form polygonal nanoscale coordination polymer in aqueous solution, which exhibits certain antitumor effect.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) holds great promise in tumor treatment. Nevertheless, it remains highly desirable to develop easy-to-fabricated PDT systems with improved tumor accumulation/internalization and timely therapeutic feedback. Here, we report a tumor-acidity-responsive chimeric peptide for enhanced PDT and noninvasive real-time apoptosis imaging.

View Article and Find Full Text PDF

In this report, an amphiphilic mitochondria-targeted chimeric peptide-based drug delivery system (DDS) was designed to overcome drug resistance. In vitro studies revealed that chimeric peptide could encapsulate doxorubicin (DOX) with high efficacy and target tumor mitochondria, realizing controlled release of DOX and in situ photodynamic therapy (PDT) in mitochondria. Importantly, reactive oxygen species (ROS) during PDT significantly disrupted mitochondria, leading to a dramatic decrease of intracellular adenosine 5'-triphophate (ATP).

View Article and Find Full Text PDF

Bright and stable CuInS2/ZnS@SiO2 nanoparticles with near-infrared (NIR) emission were competently prepared by incorporating the as-prepared hydrophobic CuInS2/ZnS quantum dots (QDs) directly into lipophilic silane micelles and subsequently an exterior silica shell was formed. The obtained CuInS2/ZnS@SiO2 nanoparticles homogeneously comprised both single-core and multicore remarkable CuInS2/ZnS QDs, while the silica shell thickness could be controlled to within 5-10 nm and their overall size was 17-25 nm. Also, the functionalized CuInS2/ZnS QDs encapsulated in the silica spheres, expedited their bioconjugation with holo-Transferrin (Tf) for further cancer cell imaging.

View Article and Find Full Text PDF

Prostaglandins are potent modulators of insulin sensitivity. We systemically evaluated the association of 61 tag single-nucleotide polymorphisms (SNP) in 14 genes involved in prostaglandin metabolism with type 2 diabetes. Among all genotyped SNPs, rs10483032 in the CBR3 (carbonyl reductase 3) gene, which encodes for an enzyme converting prostaglandin E(2) to prostaglandin F2(α), was associated with type 2 diabetes in 760 type 2 diabetic cases and 760 controls (stage-1 study) (P = 2.

View Article and Find Full Text PDF

CdTe/CdS core(small)/shell(thick) quantum dots (QDs) with tunable near-infrared fluorescence were directly synthesized in aqueous phase through a facile one-step strategy. The QDs possessed bright fluorescence, ultrasmall size, excellent photostability and good biocompatibility. Their applicability for biological imaging was demonstrated with the in vivo active tumor targeting of nude mice.

View Article and Find Full Text PDF

The modifier of quantum dots plays an important role in synthesis and nature of quantum dots, however the effect on the interaction between quantum dots and protein is not very clear until up to now. In the present paper, the interactions of CdTe quantum dots with bovine serum album (BSA) were studied by spectroscopy methods including ultraviolet-visible absorption spectrometry (UV-Vis), fluorescence spectrometry (FL) and infrared spectrometry (IR). The CdTe quantum dots were modified by three different thiol-complex including thioglycolic acid, L-cysteine and glutathione, i.

View Article and Find Full Text PDF

The interaction between CdSe quantum dots (QDs) and hemoglobin (Hb) was investigated by ultraviolet and visible (UV-vis) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and fluorescence (FL) spectroscopy. The intensity of UV-vis absorption spectrum of a mixture of CdSe QDs and Hb was obviously changed at the wavelength of 406nm at pH 7.0, indicating that CdSe QDs could bind with Hb.

View Article and Find Full Text PDF