With rapid development of holography, metasurface-based holographic communication scheme shows great potential in development of adaptive electromagnetic function. However, conventional passive metasurfaces are severely limited by poor reconfigurability, which makes it difficult to achieve wavefront manipulations in real time. Here, we propose a holographic communication strategy that on-demand target information is firstly acquired and encoded via a depth camera integrated with modified YOLOv5s target detection algorithm, then transmitted by software defined radio modules with long term evolution at 5 GHz, and finally reproduced in the form of holographic images by spin-decoupled programmable coding metasurfaces at 12 GHz after decoding through modified Gerchberg-Saxton algorithm.
View Article and Find Full Text PDFAchieving independent multitasked wavefront control by using an ultrathin plate is a challenge to increase information capacity in integration optics and radar applications. Transmission-reflection-integrated metasurface provides an efficient recipe primarily for multifunctional meta-device, however it is challenging to synergize both linear polarization (LP) and circular polarization (CP) using a single meta-plate. Here, a multichannel full-space coding metasurface composed of interleaved shared-aperture meta-atom is proposed to achieve large information capacity by capsulating judiciously engineered high efficiency triple sub-elements (modes) in four-layer scheme.
View Article and Find Full Text PDFCamouflage is an important technology in various scenarios. Usually, this involves the visible compatibility of the background, which however is facile under infrared thermal radiation detection. The simultaneous visible and thermal camouflage are challenging because it requires full and decoupled manipulations of visible reflection and infrared emissivity using one single device, let alone to its adaptivity to complex environments.
View Article and Find Full Text PDFGenerating multiple beams in distinct polarization states is promising in multi-mode wireless communication but still remains challenging in metasurface design. Here, we theoretically and experimentally demonstrate a concept of broadband receiving-transmitting metasurface and its application to the generation of multi-polarization multi-beam. By employing U-slot patch, an efficient receiving-transmitting element with full phase coverage is designed within a wide bandwidth.
View Article and Find Full Text PDFOptical materials capable of dynamically manipulating electromagnetic waves are an emerging field in memories, optical modulators, and thermal management. Recently, their multispectral design preliminarily attracts much attention, aiming to enhance their efficiency and integration of functionalities. However, the multispectral manipulation based on these materials is challenging due to their ubiquitous wavelength dependence restricting their capacity to narrow wavelengths.
View Article and Find Full Text PDFCarbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance and high electrical conductivity. However, conventional means were typically available by combining carbon and other materials to achieve effective absorption. Herein, a novel strategy using pure carbon aerogel with oriented structure was reported to enhance the EM wave absorption by synergistically modulating the wave propagation path and carbonization degree.
View Article and Find Full Text PDFAchieving high-efficient and low-power communication is pivotal yet very challenging in the emerging technologies. Unlike conventional backscatter communication system, we propose and demonstrate an amplitude-reconfigurable metasurface loaded with PIN diodes to build a front-back scattering communication transmitter, which features the exclusive advantages of full-space secondary modulation of the ambient signals with high energy utilization efficiency. Meanwhile, this device can eliminate the interference originated from the ambient source by polarization conversion in the transmission channel.
View Article and Find Full Text PDFAs a two-dimensional planar material with low depth profile, a metasurface can generate non-classical phase distributions for the transmitted and reflected electromagnetic waves at its interface. Thus, it offers more flexibility to control the wave front. A traditional metasurface design process mainly adopts the forward prediction algorithm, such as Finite Difference Time Domain, combined with manual parameter optimization.
View Article and Find Full Text PDFAchieving multifunctional wavefront manipulations of waves with a flat and thin plate is pivotal for high-capacity communications, which however is also challenging. A multi-layer metasurface with suppressed mode crosstalk provides an efficient recipe primarily for circular polarization, but all multiple functionalities still are confined to locked spin states and modes. Here, a multifunctional metasurface with spin-decoupled full-space wavefront control is reported by multiplexing both linear momentum and frequency degree of freedom.
View Article and Find Full Text PDFElectromagnetic wave multiplexing, especially for that occurring at different incidences (spatial-frequency multiplexing), is pivotal for ultrathin multifunctional interfaces and high-capacity information processing and communication. It is yet extremely challenging based on passive and compact wave elements, since the wave excitation and scattering channels are exclusively coupled through gradient phases and hence momentum matching condition at the interface. Here, we propose a spin-momentum multiplexed paradigm called a super-reflector enabling on-demand control of both retroreflections and anomalous reflections using a non-interleaved single-celled metasurface.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2022
Achieving multiple vortex beams with different modes in a planar microstrip array is pivotal, yet still extremely challenging. Here, a hybrid method combining both Pancharatnam−Berry (PB) phase that is induced by the rotation phase and excitation phase of a feeding line has been proposed for decoupling two orthogonal circularly polarized vortex beams. Theoretical analysis is derived for array design to generate quad vortex beams with different directions and an arbitrary number of topological charges.
View Article and Find Full Text PDFSince the first demonstration, remarkable progress has been made in the theoretical analysis, structural design, numerical simulation, and potential applications of metamaterial absorbers (MAs). With the continuous advancement of novel materials and creative designs, the absorption of MAs is significantly improved over a wide frequency spectrum from microwaves to the optical regime. Further, the integration of active elements into the MA design allows the dynamical manipulation of electromagnetic waves, opening a new platform to push breakthroughs in metadevices.
View Article and Find Full Text PDFElectromagnetic vortex carries the orbital angular momentum, one of the most fundamental properties of waves. The order of such vortex can be unbounded in principle, thus facilitating high-capability wave technologies for optical communications, photonic integrated circuits and others. However, it remains a key challenge to generate the high-order vortex beams in a reconfigurable, broadband and cost-effective manner.
View Article and Find Full Text PDFResearch (Wash D C)
September 2021
Many real-world applications, including adaptive radar scanning and smart stealth, require reconfigurable multifunctional devices to simultaneously manipulate multiple degrees of freedom of electromagnetic (EM) waves in an on-demand manner. Recently, kirigami technique, affording versatile and unconventional structural transformation, has been introduced to endow metamaterials with the capability of controlling EM waves in a reconfigurable manner. Here, we report for a kirigami-inspired sparse meta-architecture, with structural density of 1.
View Article and Find Full Text PDFElectromagnetic metasurface cloaks provide an alternative paradigm toward rendering arbitrarily shaped scatterers invisible. Most transformation-optics (TO) cloaks intrinsically need wavelength-scale volume/thickness, such that the incoming waves could have enough long paths to interact with structured meta-atoms in the cloak region and consequently restore the wavefront. Other challenges of TO cloaks include the polarization-dependent operation to avoid singular parameters of composite cloaking materials and limitations of canonical geometries, e.
View Article and Find Full Text PDFAchieving full-polarization () invisibility on an arbitrary three-dimensional (3D) platform is a long-held knotty issue yet extremely promising in real-world stealth applications. However, state-of-the-art invisibility cloaks typically work under a specific polarization because the anisotropy and orientation-selective resonant nature of artificial materials made the -immune operation elusive and terribly challenging. Here, we report a deterministic approach to engineer a metasurface skin cloak working under an arbitrary polarization state by theoretically synergizing two cloaking phase patterns required, respectively, at spin-up (+) and spin-down (-) states.
View Article and Find Full Text PDFCylindrical vector vortex beams, a particular class of higher-order Poincaré sphere beams, are generalized forms of waves carrying orbital angular momentum with inhomogeneous states-of-polarization on their wavefronts. Conventional methods as well as the more recently proposed segmented/interleaved shared-aperture metasurfaces for vortex beam generation are either severely limited by bulky optical setups or by restricted channel capacity with low efficiency and mode number. Here, a noninterleaved vortex multiplexing approach is proposed, which utilizes superimposed scattered waves with opposite spin states emanating from all meta-atoms in a coherent manner, counter-intuitively enabling ultrahigh-capacity, high-efficiency, and flexible generation of massive vortex beams with structured state-of-polarization.
View Article and Find Full Text PDFAchieving simultaneous polarization and wavefront control, especially circular polarization with the auxiliary degree of freedom of light and spin angular momentum, is of fundamental importance in many optical applications. Interferences are typically undesirable in highly integrated photonic circuits and metasurfaces. Here, we propose an interference-assisted metasurface-multiplexer (meta-plexer) that counterintuitively exploits constructive and destructive interferences between hybrid meta-atoms and realizes independent spin-selective wavefront manipulation.
View Article and Find Full Text PDFInspired by the developments in photonic metamaterials, the concept of thermal metamaterials has promised new avenues for manipulating the flow of heat. In photonics, the existence of natural materials with both positive and negative permittivities has enabled the creation of metamaterials with a very wide range of effective parameters. In contrast, in conductive heat transfer, the available range of thermal conductivities in natural materials is far narrower, strongly restricting the effective parameters of thermal metamaterials and limiting possible applications in extreme environments.
View Article and Find Full Text PDFWe theoretically and experimentally proposed a new structure of ultra-wideband and thin perfect metamaterial absorber loaded with lumped resistances. The thin absorber was composed of four dielectric layers, the metallic double split ring resonators (MDSRR) microstructures and a set of lumped resistors. The mechanism of the ultra-wideband absorption was analyzed and parametric study was also carried out to achieve ultra-wideband operation.
View Article and Find Full Text PDFIn this paper, we present a general method to realize polarization-selective dual-wavelength gap-surface plasmon metasurfaces (GSPMs), which are composed of strongly anisotropic meta-atoms periodically arranged in a rectangular lattice with two degrees of freedom to independently control the reflection phase and amplitude of orthogonal linear polarizations at two discrete wavelengths. We design and demonstrate dual-wavelength GSPMs as polarization beam splitters and focusing metamirrors operating at 850 and 1550 nm simultaneously. Our work provides a general approach to design multiwavelength, multifunctional metasurfaces with various potential applications.
View Article and Find Full Text PDFPancharatnam-Berry (PB) metasurfaces have intrigued a great deal of interest in recent years for anomalous reflection/refraction, vortex plate, orbital angular momentum, flat lens, photonic spin hall effect (PSHE), holograms and reflect/transmit arrays. However, almost all designs are restricted to fixed electrical performance/functionality once the design is finished. Here, we report for the first time a strategy for PB metasurface with agile working frequency by involving each meta-atom with tunable PIN diodes.
View Article and Find Full Text PDFControlling the phase distributions on metasurfaces leads to fascinating effects such as anomalous light refraction/reflection, flat-lens focusing, and optics-vortex generation. However, metasurfaces realized so far largely reply on passive resonant meta-atoms, whose intrinsic dispersions limit such passive meta-devices' performances at frequencies other than the target one. Here, based on tunable meta-atoms with varactor diodes involved, we establish a scheme to resolve these issues for microwave metasurfaces, in which the dispersive response of each meta-atom is precisely controlled by an external voltage imparted on the diode.
View Article and Find Full Text PDFFunctional integration is crucial and has become a research interest in recent years; however, available efforts suffer from low efficiency and narrow operating bandwidth. Here, we propose a novel strategy to design bifunctional meta-surface with high efficiency and largely enhanced bandwidth in reflection geometry. For demonstration, we designed and fabricated a bifunctional meta-surface which enables both focusing and anomalous reflection under different polarizations.
View Article and Find Full Text PDF