Publications by authors named "He-Jin Lee"

Neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by several pathological features, including selective neuronal loss, aggregation of specific proteins, and chronic inflammation. Aging is the most critical risk factor of these disorders. However, the mechanism by which aging contributes to the pathogenesis of neurodegenerative diseases is not clearly understood.

View Article and Find Full Text PDF

The clinical progression of neurodegenerative diseases correlates with the spread of proteinopathy in the brain. The current understanding of the mechanism of proteinopathy spread is far from complete. Here, we propose that inflammation is fundamental to proteinopathy spread.

View Article and Find Full Text PDF

α-Synuclein is a crucial element in the pathogenesis of Parkinson's disease (PD) and related neurological diseases. Although numerous studies have presented potential mechanisms underlying its pathogenesis, the understanding of α-synuclein-mediated neurodegeneration remains far from complete. Here, we show that overexpression of α-synuclein leads to impaired DNA repair and cellular senescence.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Multiple system atrophy (MSA) is a neurodegenerative disease characterized by presence of α-synuclein-positive inclusions in the cytoplasm of oligodendrocytes. These glial cytoplasmic inclusions (GCIs) are considered an integral part of the pathogenesis of MSA, leading to demyelination and neuronal demise. What is most puzzling in the research fields of GCIs is the origin of α-synuclein aggregates in GCIs, since adult oligodendrocytes do not express high levels of α-synuclein.

View Article and Find Full Text PDF

Multiple system atrophy (MSA) is a neurodegenerative disease with diverse clinical manifestations, including parkinsonism, cerebellar syndrome, and autonomic failure. Pathologically, MSA is characterized by glial cytoplasmic inclusions in oligodendrocytes, which contain fibrillary forms of α-synuclein. MSA is categorized as one of the α-synucleinopathy, and α-synuclein aggregation is thought to be the culprit of the disease pathogenesis.

View Article and Find Full Text PDF

Mutations in lysosomal genes increase the risk of neurodegenerative diseases, as is the case for Parkinson's disease. Here, we found that pathogenic and protective mutations in arylsulfatase A (ARSA), a gene responsible for metachromatic leukodystrophy, a lysosomal storage disorder, are linked to Parkinson's disease. Plasma ARSA protein levels were changed in Parkinson's disease patients.

View Article and Find Full Text PDF

Propagation of α-synuclein aggregates has been suggested as a contributing factor in Parkinson's disease (PD) progression. However, the molecular mechanisms underlying α-synuclein aggregation are not fully understood. Here, we demonstrate in cell culture, nematode, and rodent models of PD that leucine-rich repeat kinase 2 (LRRK2), a PD-linked kinase, modulates α-synuclein propagation in a kinase activity-dependent manner.

View Article and Find Full Text PDF

Background: Synucleinopathies of the aging population are an heterogeneous group of neurological disorders that includes Parkinson's disease (PD) and dementia with Lewy bodies (DLB) and are characterized by the progressive accumulation of α-synuclein in neuronal and glial cells. Toll-like receptor 2 (TLR2), a pattern recognition immune receptor, has been implicated in the pathogenesis of synucleinopathies because TLR2 is elevated in the brains of patients with PD and TLR2 is a mediator of the neurotoxic and pro-inflammatory effects of extracellular α-synuclein aggregates. Therefore, blocking TLR2 might alleviate α-synuclein pathological and functional effects.

View Article and Find Full Text PDF

Trehalose is a non-reducing disaccharide with two glucose molecules linked through an α, α-1,1-glucosidic bond. Trehalose has received attention for the past few decades for its role in neuroprotection especially in animal models of various neurodegenerative diseases, such as Parkinson and Huntington diseases. The mechanism underlying the neuroprotective effects of trehalose remains elusive.

View Article and Find Full Text PDF
Article Synopsis
  • - Huntington disease (HD) is a genetic neurodegenerative disorder linked to an expanded polyglutamine (polyQ) repeat in the huntingtin protein (HTT), resulting in motor and cognitive difficulties, particularly when the repeat exceeds 35 glutamine residues.
  • - Researchers developed a model to study the transmission of polyQ aggregates in real time using fluorescence tagging, showing that mutant polyQ (Q97) transmitted more effectively than wild type (Q25) and increased with age.
  • - The model demonstrated that polyQ transmission leads to degeneration in nerve function, reduced life span, and could help identify genetic and chemical factors affecting polyQ propagation.
View Article and Find Full Text PDF
Article Synopsis
  • Autophagy is crucial for breaking down cellular components, and its dysfunction is linked to neurodegenerative diseases, making it a target for treatment.
  • Trehalose, a disaccharide, has been studied for its effects on autophagy in relation to α-synuclein, a protein associated with Parkinson's disease, but its exact mechanism of action remains unclear.
  • The study found that while trehalose increased autophagic markers and α-synuclein aggregation, it did not harm cell viability, suggesting that trehalose might inhibit normal autophagic processes rather than enhance them.
View Article and Find Full Text PDF

Amyloid fibril formation has been implicated in the pathogenesis of neurodegenerative diseases. Fibrillation generates numerous conformers. Presumably, the conformers may possess specific biological properties, thus providing a biochemical framework for strains of prions.

View Article and Find Full Text PDF

A single amyloidogenic protein is implicated in multiple neurological diseases and capable of generating a number of aggregate "strains" with distinct structures. Among the amyloidogenic proteins, α-synuclein generates multiple patterns of proteinopathies in a group of diseases, such as Parkinson disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). However, the link between specific conformations and distinct pathologies, the key concept of the strain hypothesis, remains elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Aging increases the risk of neurodegenerative diseases by disrupting proteostasis, leading to harmful protein aggregates like α-synuclein, which is linked to Parkinson's disease.
  • Research using C. elegans models showed that aging-related genetic variations speed up the spread of these aggregates and worsen disease symptoms, including nerve damage and shorter lifespan.
  • Anti-aging treatments improved lysosomal function and slowed both aggregate transmission and the progression of related health issues, highlighting a connection between aging, proteostasis, and neurodegenerative disease progression.*
View Article and Find Full Text PDF

Synucleinopathies are a collection of neurological diseases that are characterized by deposition of α-synuclein aggregates in neurons and glia. These diseases include Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. Although it has been increasingly clear that α-synuclein is implicated in the pathogenesis of PD and other synucleinopathies, the precise mechanism underlying the disease process remains to be unraveled.

View Article and Find Full Text PDF

Impaired autophagy has been implicated in many neurodegenerative diseases, such as Parkinson's disease (PD), and might be responsible for deposition of aggregated proteins in neurons. However, little is known about how neuronal autophagy and clearance of aggregated proteins are regulated. Here, we show a role for Toll-like receptor 2 (TLR2), a pathogen-recognizing receptor in innate immunity, in regulation of neuronal autophagy and clearance of α-synuclein, a protein aggregated in synucleinopathies, including in PD.

View Article and Find Full Text PDF

The cell-to-cell transmission of protein aggregates has been implicated in the progression of pathological phenotypes in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In recent years, several experimental model systems have been developed to study the mechanisms of cell-to-cell transmission. Herein, we describe cell culture models with which cell-to-cell transmission of α-synuclein can be quantitatively analyzed.

View Article and Find Full Text PDF

Lysosomal dysfunction is a common pathological feature of neurodegenerative diseases. GTP-binding protein type A1 (GBA1) encodes β-glucocerebrosidase 1 (GCase 1), a lysosomal hydrolase. Homozygous mutations in GBA1 cause Gaucher disease, the most common lysosomal storage disease, while heterozygous mutations are strong risk factors for Parkinson's disease.

View Article and Find Full Text PDF

Parkinson's disease is a multifactorial disorder with several genes linked to the familial types of the disease. ATP13A2 is one of those genes and encode for a transmembrane protein localized in lysosomes and late endosomes. Previous studies suggested the roles of this protein in lysosomal functions and cellular ion homeostasis.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how α-synuclein aggregates, which are linked to Parkinson's disease (PD), spread between nerve cells, revealing a cycle that includes uptake, co-aggregation, and exocytosis of these aggregates.
  • It identifies the role of glucocerebrosidase depletion in facilitating this spread, highlighting its connection to increased PD risk and cognitive decline.
  • Overall, the research offers insight into the mechanisms of α-synuclein transmission and the impact of genetic mutations on the development of PD and related disorders.
View Article and Find Full Text PDF

Background/objectives: The traditional Korean diet is plant-based and rich in antioxidants. Previous studies have investigated the potential health benefits of individual nutrients of Korean foods. However, the cumulative effects of a Korean diet on inflammation remain poorly understood.

View Article and Find Full Text PDF