World J Surg Oncol
September 2024
Medicine (Baltimore)
October 2022
Objective: The structural maintenance of chromosome (SMC) gene family, including 6 proteins, is involved in a wide range of biological functions in different human cancers. Nevertheless, there is little research on the expression patterns, potential functions and prognostic value of SMC genes in hepatocellular carcinoma (HCC). Based on publicly available databases and integrative bioinformatics analysis, we tried to determine the value of SMC gene expression in predicting the risk of developing HCC.
View Article and Find Full Text PDFExtracellular vesicles secreted by tumor microenvironment (TME) cells are vital players in tumor progression through transferring nucleic acids and proteins. Macrophages are the main immune cells in TME and tumor associated macrophages (TAM) express M2 phenotype, which induce tumor proliferation, angiogenesis, invasion, metastasis and immune elimination, resulting in the subsequent evolution of malignancies. There are a high number of studies confirmed that tumor cells and TAM interact with each other through extracellular vesicles in various cancers, like pancreatic ductal adenocarcinoma, gastric cancer, breast cancer, ovarian cancer, colon cancer, glioblastoma, hepatocellular cancer, and lung cancer.
View Article and Find Full Text PDFCell Death Dis
April 2021
Circular RNAs (circRNAs) are increasingly gaining importance and attention due to their diverse potential functions and their value as diagnostic biomarkers (disease specific). This study aims to explore the novel mechanisms by which exosome-contained circRNAs promote tumor development and metastasis in TNBC. We identified increased circRNA circPSMA1 in TNBC cells, their exosomes, and serum exosomes samples from TNBC patients.
View Article and Find Full Text PDFWe aimed to explore the roles of circular RNA, circVAPA in regulating cell migration and invasion of breast cancer. CircVAPA expression was detected in breast cancer tissues and cells. The role of circVAPA was evaluated by MTT assay, wound-healing and transwell assay.
View Article and Find Full Text PDFCircular RNAs (circRNAs) still have many potential functions in the process of tumor development that are not completely understood. The study aims to explore novel circRNAs and their mechanisms of action in breast cancer (BCa). A combination strategy of RNA-sequencing (RNA-seq) technique, quantitative real-time PCR and bioinformatic analysis was employed to identify the potential mechanisms involving differentially expressed circRNAs in the serum exosomes and tissues of BCa patients.
View Article and Find Full Text PDFBreast cancer (BCa) is one of the most frequently diagnosed cancers and leading cause of cancer deaths among females worldwide. Circular RNAs (circRNAs) are a new class of endogenous regulatory RNAs characterized by circular shape resulting from covalently closed continuous loops that are capable of regulating gene expression at transcription or post-transcription levels. With the unique structures, circRNAs are resistant to exonuclease RNase R and maintain stability more easily than linear RNAs.
View Article and Find Full Text PDFAim: The study aimed to investigate the role of circular RNA circASS1 in breast cancer cells.
Materials & Methods: Circular RNAs microarray expression profile were analyzed in MCF-7, MDA-MB-231, and qRT-PCR and western blotting were used to quantify expression of circASS1 and its parental gene ASS1. Wound healing, migration and invasion assay were performed.
Objectives: Accumulating evidence has been reported that circular RNAs (circRNAs) are a class of relatively stable, non-coding RNAs, which are involved in the progression of many types of diseases. However, the mechanism of hsa_circ_0052112 in breast cancer cells is not entirely clear. Hsa_circ_0052112, generated from the ZNF83 gene, is selected by analyzing circRNA expression profiles of breast cancer cell by using microarray assay.
View Article and Find Full Text PDFAim: To study the role of hsa_circ_0072995 in regulating the invasion and migration of breast cancer cells.
Materials & Methods: Hsa_circ_0072995 expression was confirmed by quantitative real-time PCR; evaluating the migration and invasion of breast cancer cells through transwell assay; predicating circRNA/microRNAs interaction using the miRanda and RNAhybrid software; identifying the relationship between hsa_circ_0072995 and miR-30c-2-3p by luciferase activity assay; detecting the location of hsa_circ_0072995 by Fluorescence in situ hybridization assay.
Results: Hsa_circ_0072995 was significantly upregulated in MDA-MB-231 cells compared with MCF-7 cells.
MiRNAs, small non-coding RNA molecules, were recognized to be associated with the incidence and development of diverse neoplasms. MiRNAs were small non-coding RNAs that could regulate post-transcriptional level by binding to 3'-UTR of target mRNAs. Amongst which, was demonstrated that it had significant impact on oncogenicity in various neoplasms through binding to critical genes which enhanced or inhibited the progression of cancers.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are recently regarded as a naturally forming family of widespread and diverse endogenous noncoding RNAs (ncRNAs) that may regulate gene expression in mammals. At present, above 30000 circRNAs have already been found, with their unique structures to maintain stability more easily than linear RNAs. Several previous literatures stressed on the important role of circRNAs, whose expression was relatively correlated with patients' clinical characteristics and grade, in the carcinogenesis of cancer.
View Article and Find Full Text PDFmiR-30a is situated on chromosome 6q.13 and is produced by an intronic transcriptional unit. However, its role in regulating the apoptosis, invasion and metastasis of breast cancer cells is not yet fully understood.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are a class of long, non-coding RNAs molecules that shape a covalently closed continuous loop which have no 5'-3' polarity and contain no polyA tail. CircRNAs also possess relatively jarless framework and are highly tissue-specific expressed in the eukaryotic transcriptome. Emerging evidences have discovered that thousands of endogenous circRNAs are present in mammalian cells and they mediate gene expression at the transcriptional or post-transcriptional level by binding to microRNAs or other molecules and then inhibit their function.
View Article and Find Full Text PDFMicroRNAs (miRs) are short and highly conserved non-coding RNAs molecules consisting of 18-25 nucleotides that regulate gene expression at post-transcriptional level by direct binding to complementary binding sites within the 3'untranslated region (3'UTR) of target mRNAs. New evidences have demonstrated that miRNAs play an important role in diverse physiological processes, including regulating cell growth, apoptosis, metastasis, drug resistance, and invasion. In chromosomes 11 and 22 of the miR-130 family, paralogous miRNA sequences, miR-130a and miR-130b are situated, respectively.
View Article and Find Full Text PDFLiver X receptor (LXR) has been exploited widely as a drug target in breast cancer treatment, and various mechanisms underlying the effects of LXR in this area are well studied. The activated LXR plays important roles in estrogen receptor α (ERα) breast cancer cells, such as reducing cell proliferation and arresting cell cycle progression. Different LXR ligands have diverse effects on the development of breast cancer, such as the inhibitory effect of oxysterol, which can return cells to normocholesterol conditions and target other metabolic genes.
View Article and Find Full Text PDFThis article has been withdrawn at the request of the authors and editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.
View Article and Find Full Text PDFBackground/aims: This study aims to investigate the effect of Luteolin on breast cancer in vitro and in vivo and the interaction between miRNAs and Notch signaling after Luteolin intervention, and illustrates the possible underlying mechanism and regulation loop.
Methods: Cell growth/survival assays and cell cycle analyses were performed to evaluate cell survival in vitro. Scratch tests, cell invasion assays and tube formation assays were carried out to analyze cell viability and identify the impact of Luteolin on angiogenesis.
Objectives: MiRNA-139 is located at 11q13.4 and it has anti-oncogenic and antimetastatic activity in humans. However, its role in controlling apoptosis, invasion and metastasis and the development of chemosensitivity to docetaxel in breast cancer cells are not fully understood.
View Article and Find Full Text PDFBackground: Currently, exosomes that act as mediators of intercellular communication are being researched extensively. Our previous studies confirmed that these exosomes contain microRNAs (miRNAs) that could alter chemo-susceptibility, which is partly attributed to the successful intercellular transfer of multidrug resistance (MDR)-specific miRNAs. We also confirmed that β-elemene could influence MDR-related miRNA expression and regulate the expression of the target genes PTEN and Pgp, which may lead to the reversal of the chemoresistant breast cancer (BCA) cells.
View Article and Find Full Text PDF