Publications by authors named "He Zhangwei"

The effects of ionic regulation on the structure of membrane surface proteins and backwashing efficiency during ultrafiltration were investigated to reveal the mechanism of ionic mitigating membrane fouling. The repulsion between proteins and membrane was enhanced after ion regulation. With the extension of ultrafiltration time, the α-helix and random coil of membrane surface proteins were decreased, while the β-turn structure increased which was subjected to continuous regulation by Na, Zn and K at 4 min, 8 min and 12 min, respectively.

View Article and Find Full Text PDF

Pursuing high stability becomes the core challenge in realizing the widespread application of perovskite solar cells (PerSCs). Here, a practical internal-capsulation strategy is proposed by introducing cross-linkable methacrylate analogs upon the perovskite layer, hindering ion migration and preventing lead leakage to achieve stable PerSCs. Butyl methacrylate (UMA) and benzyl methacrylate (BMA) can chemically interact with the perovskite layer, especially for the BMA dimer with significant π-interactions among the hanging benzene rings.

View Article and Find Full Text PDF

Biochar has been used to enhance methane generation from anaerobic digestion through establishing direct interspecific electron transfer between microorganisms. However, the microbial communication is still inadequate, thereby limiting further methane production improvement contributed by biochar. This study investigated the roles of quorum-sensing molecules, acylated homoserine lactone (AHL), in anaerobic digestion of waste activated sludge aided by biochar.

View Article and Find Full Text PDF

To recover methane from waste activated sludge through anaerobic digestion (AD) is one promising alternative to achieve carbon neutrality for wastewater treatment plants. However, humic acids (HAs) are one of the major compositions in waste activated sludge, and their accumulation performs inhibition effects on AD. This study investigated the potentials of biochar (BC) in alleviating inhibition effects of HAs on AD.

View Article and Find Full Text PDF

Nitrate photolysis has become an efficient, low-cost and promising technology for emerging contaminants removal, while its performance and mechanism for waste activated sludge (WAS) treatment is still unknown. This study innovatively introduced nitrate photolysis for WAS disintegration, and investigated the effect of nitrate addition (150-375 mg N/L) for short-chain fatty acids (SCFAs) production during anaerobic fermentation (AF). The results showed that nitrate photolysis significantly promoted the SCFAs production from WAS, and peaked at 280.

View Article and Find Full Text PDF

The production of short-chain fatty acids (SCFAs) is constrained by substrate availability and the increased fractional pressure of H emitted by acidogenic/fermentative bacteria during anaerobic fermentation of waste activated sludge (WAS). This study introduced a novel approach employing zero-valent iron (ZVI)-activated sulfite pretreatment combined with H-consuming sulfate-reducing bacteria (SRB) mediation to improve SCFAs, especially acetate production from WAS fermentation. Experimental results showed that the combined ZVI-activated sulfite and incomplete-oxidative SRB (io-SRB) process achieved a peak SCFAs production of 868.

View Article and Find Full Text PDF

Sputtered indium tin oxide (ITO) fulfills the requirements of top transparent electrodes (TTEs) in semitransparent perovskite solar cells (PSCs) and stacked tandem solar cells (TSCs), as well as of the recombination layers in monolithic TSCs. However, the high-energy ITO particles will cause damage to the devices. Herein, the interface reactive sputtering strategy is proposed to construct cost-effective TTEs with high transmittance and excellent carrier transporting ability.

View Article and Find Full Text PDF
Article Synopsis
  • Persulfate oxidation (PS) is being explored for its ability to generate free radicals that enhance the digestion of waste activated sludge (WAS) for waste treatment.
  • The study tested various activation methods of PS, including ferrous, zero-valent iron (ZVI), ultraviolet (UV), and heat, finding that PS activated by ZVI significantly boosted methane production, while heat treatment yielded the highest levels of short-chain fatty acids (SCFAs).
  • The research also revealed different microbial populations based on the PS activation method, indicating complex interactions among various bacteria that affect sludge digestion and suggesting that the right treatment can improve energy recovery from waste.
View Article and Find Full Text PDF

Phosphorus is one of the important factors to successfully establish the microalgal-bacterial symbiosis (MABS) system. The migration and transformation of phosphorus can occur in various ways, and the effects of phosphate on the MABS system facing environmental impacts like heavy metal stress are often ignored. This study investigated the roles of phosphate on the response of the MABS system to zinc ion (Zn).

View Article and Find Full Text PDF

Biochar produced from bio-wastes has been widely used to promote the performance of anaerobic digestion. Waste activated sludge (WAS) is considered as a kind of popular precursor for biochar preparation, but the abundant resources in WAS were neglected previously. In this study, the roles of biochar prepared from raw, pretreated, and fermented sludge on anaerobic digestion were investigated.

View Article and Find Full Text PDF

Synergistic morphology and defects management at the buried perovskite interface are challenging but crucial for the further improvement of inverted perovskite solar cells (PerSCs). Herein, an amphoteric organic salt, 2-(4-fluorophenyl)ethylammonium-4-methyl benzenesulfonate (4FPEAPSA), is designed to optimize the film morphology and energy level alignment at the perovskite buried interface. 4FPEAPSA treatment promotes the growth of a void-free, coarse-grained, and hydrophobic film by inducing the crystal orientation.

View Article and Find Full Text PDF

Heavy metal (HM) pollution, particularly in its ionic form in water bodies, is a chronic issue threatening environmental security and human health. The microalgal-bacterial symbiosis (MABS) system, as the basis of water ecosystems, has the potential to treat HM wastewater in a sustainable manner, with the advantages of environmental friendliness and carbon sequestration. However, the differences between laboratory studies and engineering practices, including the complexity of pollutant compositions and extreme environmental conditions, limit the applications of the MABS system.

View Article and Find Full Text PDF

Boosting acetate production from waste activated sludge (WAS) fermentation is often hindered by the inefficient solubilization in the hydrolysis step and the high hydrogen pressure ( [Formula: see text] ) during the acidogenesis of C3-C5 short-chain fatty acid (SCFAs), i.e., propionate (HPr), butyrate (HBu) and valerate (HVa).

View Article and Find Full Text PDF

Microalgal-bacterial symbiosis (MABS) system performs synergistic effect on the reduction of nutrients and carbon emissions in the water treatment process. However, antimicrobial agents are frequently detected in water, which influence the performance of MABS system. In this study, triclosan (TCS) was selected to reveal the effects and mechanisms of antimicrobial agents on MABS system.

View Article and Find Full Text PDF

Potassium ferrate (KFeO) has been extensively employed to promote short-chain fatty acids (SCFAs) production from anaerobic fermentation of waste activated sludge (WAS) because of its potent oxidizing property and formation of alkaline hydrolyzed products (potassium hydroxide, KOH and ferric hydroxide, Fe(OH)). However, whether KFeO actually works as dual functions of both an oxidizing agent and an alkalinity enhancer during the anaerobic fermentation process remains uncertain. This study aims to identify the contributions of hydrolyzed products of KFeO on SCFAs production.

View Article and Find Full Text PDF

Fine-tuning the thermodynamic self-assembly of molecules via volatile solid additives has emerged to be an effective way to construct high-performance organic solar cells. Here, three-dimensional structured solid molecules have been designed and applied to facilitate the formation of organized molecular assembly in the active layer. By means of systematic theory analyses and film-morphology characterizations based on four solid candidates, we preselected the optimal one, 4-fluoro-N,N-diphenylaniline (FPA), which possesses good volatility and strong charge polarization.

View Article and Find Full Text PDF

Anaerobic digestion is widely employed for the treatment of waste activated sludge (WAS) due to its advantages like simultaneous energy recovery and sludge stabilization, promoting carbon-neutral operation of wastewater treatment plants. Natural zeolite, a low-cost and eco-friendly additive, has the potential to improve methane production from anaerobic digestion. This study investigated the effects of natural zeolite on anaerobic digestion when the substrate was WAS.

View Article and Find Full Text PDF

The unavoidably positively and negatively charged defects at the interface between perovskite and electron transport layer (ETL) often lead to severe surface recombination and unfavorable energy level alignment in inverted perovskite solar cells (PerSCs). Inserting interlayers at this interface is an effective approach to eliminate charged defects. Herein, the macrocyclic molecule valinomycin (VM) with multiple active sites of ─C═O, ─NH, and ─O─ is employed as an interlayer at the perovskite/ETL contact to simultaneously eliminate positively and negatively charged defects.

View Article and Find Full Text PDF

Methane is one of the most promising renewable energies to alleviate energy crisis or replace fossil fuels, which can be recovered from anaerobic digestion of bio-wastes. However, the engineering application of anaerobic digestion is always hindered by low methane yield and production rate. This study revealed the roles and mechanisms of a green-prepared magnetic biochar (MBC) in promoting methane production performance from waste activated sludge.

View Article and Find Full Text PDF

Bacterial migration is crucial for the stability of activated sludge but rarely reported. The static distribution was explored by changes in bacteria concentration with extracellular polymeric substances (EPS) extractions. Next, denitrification and aeration were conducted as normal running conditions for examining the bacterial migration between floc-attached and dispersed growth.

View Article and Find Full Text PDF

Triclosan (TCS) is an antimicrobial agent and frequently detected in wastewater or water body. This study investigated the role of TCS in microalgal-bacterial symbiosis (MABS) system treating wastewater. The results showed that the removal efficiencies of NH-N, total nitrogen, and total phosphorus decreased under increased TCS stress, with decrease ratios of 26.

View Article and Find Full Text PDF

Anaerobic digestion has been proved as one promising strategy to simultaneously achieve resource recovery and environmental pollution control for biosolid treatment, and adding exogenous materials is a potential alternative to promote the above process. This study investigated response mechanisms of anaerobic digestion of waste activated sludge (WAS) to particle sizes of zeolite. Results showed that the methane production reached 186.

View Article and Find Full Text PDF
Article Synopsis
  • Large open-circuit voltage loss is a key factor hindering efficiency in wide bandgap perovskite solar cells (PerSCs).
  • Researchers developed a new method using hexachlorotriphosphazene to treat the buried interface and reduce this voltage loss.
  • The enhanced PerSCs achieved 21.47% efficiency with a 1.21 V output and retained 90% efficiency after 500 hours of aging in nitrogen.
View Article and Find Full Text PDF

The stringent response of activated sludge systems to either stressed or harmful environments is important for the stable operation of activated sludge, which is examined by taking copper ion (Cu) as a stress model in this study. When weak stress was employed (Cu ≤ 2.5 mg/L), the N-acyl-homoserine lactones (AHLs) of C6-, C8-, and C10-HSL increased by 30 %, 13 %, and 127 %, respectively, while the redox sensor green (RSG) intensity decreased by 28 %.

View Article and Find Full Text PDF

Methane production through anaerobic digestion (AD) of municipal sludge is economic and eco-friendly, which is commonly affected by temperature and pollutants residues. However, little is known about methanogenesis in psychrophilic AD (PAD) with temperature variations that simulating seasonal variations and with antibiotic stress. Here, two groups of AD systems with oxytetracycline (OTC) were operated with temperature maintained at 35 °C and 15 °C or variation to explore the influence to methanogenesis.

View Article and Find Full Text PDF