Angew Chem Int Ed Engl
January 2025
Recent advances in single-cell proteomics enable the direct profiling of thousands of proteins from a single mammalian cell. However, due to the bottlenecks in detecting low-abundance secreted proteins and extracellular vesicle (EV) proteins (collectively referred to as the secretome) against a background of high-abundance proteins in serum-containing culture medium, the comprehensive investigation of the secretome at the single-cell level using nanoLC-MS/MS still remains challenging. Herein, we report a novel single-cell secretome profiling (SCSP) method by integrating the metabolic labeling of newly synthesized proteins, click chemistry-based enrichment, and in situ digestion of the labeled secretome in an alkyne-functionalized capillary micro-reactor, followed by nanoLC-MS/MS analysis.
View Article and Find Full Text PDFSingle-cell multi-omics analysis can provide comprehensive insights to study cell-to-cell heterogeneity in normal and disease physiology. However, due to the lack of amplification technique, the measurement of proteome and metabolome in the same cell is challenging. Herein, a novel on-capillary alkylation micro-reactor (OCAM) was developed to achieve proteo-metabolome profiling in the same single cells, by which proteins were first covalently bound to an iodoacetic acid functionalized open-tubular capillary micro-reactor sulfhydryl alkylation reaction, and metabolites were rapidly eluted, followed by on-column digestion of captured proteins.
View Article and Find Full Text PDFPreviously released pear genomes contain a plethora of gaps and unanchored genetic regions. Here, we report a telomere-to-telomere (T2T) gap-free genome for the red-skinned pear, 'Yunhong No. 1' (YH1; ), which is mainly cultivated in Yunnan Province (southwest China), the pear's primary region of origin.
View Article and Find Full Text PDFThe outbreak of coronavirus disease 2019 (COVID-19) has overwhelmed the global economy and human well-being. On account of the sharp increase in test demand, there is a need for an accurate and alternative diagnosis method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, with the aim to specifically identify the trace SARS-CoV-2 S1 glycoprotein, we developed a high-sensitivity and high-selectivity diagnostic method based on the targeted parallel reaction monitoring (PRM) assay of eight selected peptides.
View Article and Find Full Text PDFBackground: Known for its rich history and culture, Qingdao is a typical symbol of Chinese maritime culture. Its unique genetic landscape has aroused interest among geneticists and forensic scientists. However, the genetic landscape of Qingdao has never been uncovered.
View Article and Find Full Text PDFProtein phosphorylation is one of the most commonly studied and ubiquitous post-translational modifications (PTMs), and defining site-specific phosphorylation is essential to understand basic and disease biology. However, the chemical properties and biological activities hamper the detection of non-canonical N-phosphorylation from biological samples, and the study of N-phosphorylation over the last half century has lagged behind canonical O-phosphorylation. Here, a mild-acidic method based-on SiO@DpaZn beads was developed for protein N-phosphorylation sites identification.
View Article and Find Full Text PDFMitochondrial DNA B Resour
July 2020
Vibrio mediterranei is a Gram-negative bacterium of the family Vibrionaceae. Vibrio mediterranei strain 117-T6 was pathogenic to Pyropia yezoensis, a red seaweed cultivated in China, by causing death to its conchocelis. Here, we report the complete genome sequence of Vibrio mediterranei 117-T6.
View Article and Find Full Text PDF