Publications by authors named "Hazendonk P"

The first Lewis acid base adducts of MoF and an organic base have been synthesized, i. e., MoF(NCH) and MoF(NCH).

View Article and Find Full Text PDF

We report the solution behavior, oligomerization state, and structural details of myotoxin-II purified from the venom of Bothrops asper in the presence and absence of sodium dodecyl sulfate (SDS) and multiple lipids, as examined by analytical ultracentrifugation and nuclear magnetic resonance. Molecular functional and structural details of the myotoxic mechanism of group II Lys-49 phospholipase A homologues have been only partially elucidated so far, and conflicting observations have been reported in the literature regarding the monomeric vs. oligomeric state of these toxins in solution.

View Article and Find Full Text PDF

Biochar in ruminant diets is being assessed as a method for simultaneously improving animal production and reducing enteric CH emissions, but little is known about subsequent biochar-manure interactions post-excretion. We examined chemical properties, greenhouse gas (GHG) emissions and organic matter (OM) composition during farm scale stockpiling (SP) or composting (CP) of manure from cattle that either received a pine-based biochar in their diet (BM) or did not (RM). Manure piles were monitored hourly for temperature and weekly for top surface CO, NO and CH fluxes over 90 d in a semiarid location near Lethbridge, AB, Canada.

View Article and Find Full Text PDF

The Lewis-acid behavior of [SF][MF] (M = Sb, As) salts toward mono- and bidentate nitrogen bases was explored. Reactions of [SF][MF] with excesses of CHCN and CHN yielded [SF(L)] (L = CHCN, CHN) salts, whereas the reaction of [SF][SbF] with equimolar 1,10-phenanthroline (phen) in CHCN afforded [SF(phen)][SbF]·2CHCN. Salts of these cations were characterized by low-temperature X-ray crystallography and Raman spectroscopy in the solid state as well as by F NMR spectroscopy in solution.

View Article and Find Full Text PDF

The use of biochar (BC) in feedlot cattle diets has recently been explored as an approach to simultaneously improving animal production and reducing enteric methane (CH) emissions. This study examines the impact of BC on manure properties and whether BC affects manure composition and carbon (C) and nitrogen (N) outputs from feedlot steers offered a barley-based diet with BC at 0.0, 0.

View Article and Find Full Text PDF

The structure of [WOF] has been reinvestigated by low-temperature X-ray crystallography and DFT (MN15/def2-SVPD) studies. Whereas the WF ring of the tetramer is planar and disordered in the solid state, the optimized gas-phase geometry prefers a disphenoidally puckered WF ring and demonstrates asymmetric fluorine bridging. Dissolution of MOF (M = Mo, W) in SO and SF results in the formation of MOF(OSO) and [SF][MOF], respectively.

View Article and Find Full Text PDF

The enhanced reactivity of [WF ] over WF has been exploited to access a neutral derivative of elusive WF . The reaction of WF (NC H ) with [(CH ) Si(NC H )][O SCF ] in CH Cl results in quantitative formation of trigonal-dodecahedral [WF (NC H ) ] , which has been characterised as its [O SCF ] salt by Raman spectroscopy in the solid state and variable-temperature NMR spectroscopy in solution. The salt is susceptible to slow decomposition in solution at ambient temperature via dissociation of a pyridyl ligand, and the resultant [WF (NC H ) ] is reduced to WF (NC H ) in the presence of excess C H N, as determined by F NMR spectroscopy.

View Article and Find Full Text PDF

Long-term application of feedlot manure to cropland may increase the quantity of soil organic carbon (C) and change its quality, which may influence soil water repellency. The objective was to determine the influence of feedlot manure type (stockpiled vs. composted), bedding material (straw [ST] vs.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) are short 8-30 amino-acid oligopeptides that act as effective transducers of macromolecular cargo, particularly nucleic acids. They have been implemented in delivering dsDNA, ssDNA, and dsRNA into animal and plant cells. CPPs and nucleic acids form nano-complexes that are often 100-300 nm in size but still effectively transit the cell membrane of animal cells, but are less effective with plant cells due to the plant cell wall.

View Article and Find Full Text PDF

Fusarium head blight (FHB) is a disease of cereal crops caused by trichothecene producing Fusarium species. Trichothecenes, macrocylicic fungal metabolites composed of three fused rings (A-C) with one epoxide functionality, are a class of mycotoxins known to inhibit protein synthesis in eukaryotic ribosomes. These toxins accumulate in the kernels of infected plants rendering them unsuitable for human and animal consumption.

View Article and Find Full Text PDF

The solid-state structure of (CH3)3SnF was reinvestigated by X-ray diffraction techniques as well as by multi-nuclear solid-state NMR spectroscopy. Trimethyltin fluoride crystallizes from hot ethanol in the orthorhombic space group Pnma at room temperature and changes to a low-temperature orthorhombic phase (space group: Cmcm) below -70 °C. In both modifications, trimethyltin fluoride adopts a linear chain structure with symmetric fluorine bridges, in contrast to previous reports.

View Article and Find Full Text PDF

Sulfur tetrafluoride was shown to act as a Lewis acid towards organic nitrogen bases, such as pyridine, 2,6-dimethylpyridine, 4-methylpyridine, and 4-dimethylaminopyridine. The SF4 ⋅NC5 H5 , SF4 ⋅2,6-NC5 H3 (CH3 )2 , SF4 ⋅4-NC5 H4 (CH3 ), and SF4 ⋅4-NC5 H4 N(CH3 )2 adducts can be isolated as solids that are stable below -45 °C. The Lewis acid-base adducts were characterized by low-temperature Raman spectroscopy and the vibrational bands were fully assigned with the aid of density functional theory (DFT) calculations.

View Article and Find Full Text PDF

To gain better control over the characteristics of the alkanethiol-capped silver nanoparticles (SNP) prepared by the two-phase method, the intermediate stage of this reaction and the structure of the precursor compound were investigated. Samples taken from the intermediate stage of the reaction were analyzed by NMR and vibrational spectroscopy both in solution and after solvent removal. The (1)H NMR chemical shifts of the complexes formed during the phase-transfer step were used to detect any structural changes that occur upon introduction of nonanethiol.

View Article and Find Full Text PDF

Sterol dimers are the main oxidation products formed during sterols degradation at elevated temperatures. An investigation was carried out to decipher the structure of dimers differing in polarity, formed during β-sitosterol thermo-oxidation. The oxidation products were fractionated using silica gel into non-polar (NP), mid-polar (MP) and polar fractions (P).

View Article and Find Full Text PDF

The structural characterization and dynamic properties of solid-state inclusion complexes (ICs) formed between β-cyclodextrin (β-CD; host) and perfluorooctanoic acid (PFOA; guest) were investigated using (13)C NMR spectroscopy. The 1:1 and 2:1 host/guest solid-state complexes were prepared using a modified dissolution method to obtain complexes with high phase purity. These complexes were further characterized using differential scanning calorimetry (DSC), FT-IR spectroscopy, powder X-ray diffraction (PXRD), (19)F directpolarization (DP), and (13)C cross-polarization (CP) with magic-angle spinning (MAS) NMR spectroscopy.

View Article and Find Full Text PDF

Thermo-oxidative degradation of sterols at temperature typical for frying leads to the formation of oxidised derivatives, fragmented sterols and oligomers. Recent research on sterol oxidation focuses mainly on the oxysterol derivatives formation to the exclusion of compounds with high molecular mass. The aim of this work was to decipher the chemical structure of non-polar dimers formed during β-sitosterol oxidation at 180°C in the presence of oxygen.

View Article and Find Full Text PDF

Sulfur tetrafluoride and triethylamine react at low temperatures to form a 1:1 adduct. The unambiguous characterization of the SF(4)·N(C(2)H(5))(3), which is only stable at low temperature, proves the Lewis acid property of SF(4) towards organic Lewis bases. The S-N bond has a length of 2.

View Article and Find Full Text PDF

NMR spin-lattice relaxation efficiency is similar at all carbon and silicon sites in aluminum-doped 4H- and 6H-polytype silicon carbide samples, indicating that the valence band edge (the top of the valence band), where the holes are located in p-doped materials, has similar charge densities at all atomic sites. This is in marked contrast to nitrogen-doped samples of the same polytypes where huge site-specific differences in relaxation efficiency indicate that the conduction band edge (the bottom of the conduction band), where the mobile electrons are located in n-doped materials, has very different charge densities at the different sites. An attempt was made to observe (27)Al NMR signals directly, but they are too broad, due to paramagnetic line broadening, to provide useful information about aluminum doping.

View Article and Find Full Text PDF

Fungal toxins, such as those produced by members of the order Hypocreales, have widespread effects on cereal crops, resulting in yield losses and the potential for severe disease and mortality in humans and livestock. Among the most toxic are the trichothecenes. Trichothecenes have various detrimental effects on eukaryotic cells including an interference with protein production and the disruption of nucleic acid synthesis.

View Article and Find Full Text PDF

The structure of T-2 toxin in the solid-state is limited to X-ray crystallographic studies, which lack sufficient resolution to provide direct evidence for hydrogen-bonding interactions. Furthermore, its solution-structure, despite extensive Nuclear Magnetic Resonance (NMR) studies, has provided little insight into its hydrogen-bonding behavior, thus far. Hydrogen-bonding interactions are often an important part of biological activity.

View Article and Find Full Text PDF

Structural characterization and dynamic properties of solid-state inclusion complexes of β-cyclodextrin (β-CD) with perfluorooctanoic acid (PFOA) were investigated by (19)F/(13)C solid-state and (19)F/(1)H solution NMR spectroscopy. The complexes in the solid state were prepared using dissolution and slow cool methods, where thermal analyses (DSC and TGA), PXRD, and FT-IR results provided complementary support that inclusion complexes were formed between β-CD and PFOA with variable stoichiometry and inclusion geometry. (19)F DP (direct polarization) and (13)C CP (cross-polarization) with magic-angle spinning (MAS) solids NMR, along with (19)F/(1)H solution NMR were used to characterize the complexes in the solid and solution phases, respectively.

View Article and Find Full Text PDF

The structure of the silica supported palladium(II) complex [Pd(dppp)(S2C-NEt2)]BF4 (abbreviated as [Pd(dppp)(dtc)]BF4, where dppp is Ph2P(CH2)3PPh2) and interactions between the [Pd(dppp)(dtc)]+ cation, the BF4(-) anion, and the silica surface are studied using solid-state NMR spectroscopy. The unsupported, crystalline form of [Pd(dppp)(dtc)]BF4 is also investigated, both by X-ray diffraction and NMR. The structures of the cation and anion are found to be essentially the same in both unsupported and supported complex.

View Article and Find Full Text PDF

Domain selection in polymer NMR is limited to experiments specifically suited to each structural domain owing to its particular spin dynamics and relaxation properties. The DIVAM experiment can be tuned to select for signal from the domain of interest, making it possible to obtain signals specific to different domains using only one experiment. An early description of this sequence explains this tunability using a simple one-spin-relaxation model, thereby limiting the selection mechanism to incoherent processes and thus ignoring the coherent terms such as chemical shift anisotropy (CSA), dipolar coupling and offset terms.

View Article and Find Full Text PDF

The reaction of the 1,2,3,5-dithiadiazolyls (4-R-C(6)H(4)CN(2)S(2))(2) (R = Me, 2a; Cl, 2b; OMe, 2c; and CF3, 2d) and (3-NC-5-tBu-C(6)H(3)CN(2)S(2))(2) (2e) with [CpCr(CO)(3)](2) (Cp = eta(5)-C(5)H(5)) (1) at ambient temperature respectively yielded the complexes CpCr(CO)(2)(eta(2)-S(2)N(2)CC(6)H(4)R) (R = 4-Me, 3a; 4-Cl, 3b; 4-OMe, 3c; and 4-CF(3), 3d) and CpCr(CO)(2)(eta(2)-S(2)N(2)CC(6)H(3)-3-(CN)-5-(tBu)) (3e) in 35-72% yields. The complexes 3c and 3d were also synthesized via a salt metathesis method from the reaction of NaCpCr(CO)(3) (1B) and the 1,2,3,5-dithiadiazolium chlorides 4-R-C(60H(4)CN(2)S(2)Cl (R = OMe, 8c; CF(3), 8d) with much lower yields of 6 and 20%, respectively. The complexes were characterized spectroscopically and also by single-crystal X-ray diffraction analysis.

View Article and Find Full Text PDF

The coordination compounds [Mg(XeF(2))(2)][AsF(6)](2), [Mg(XeF(2))(4)][AsF(6)](2), [Ca(XeF(2))(2.5)][AsF(6)](2), [Ba(XeF(2))(3)][AsF(6)](2), and [Ba(XeF(2))(5)][AsF(60](2) were characterized by solid-state (19)F and (129)Xe magic-angle spinning NMR spectroscopy. The (19)F and (129)Xe NMR data of [Mg(XeF(2))(2)][AsF(6)](2), [Mg(XeF(2)(4)][AsF(6)](2), and [Ca(XeF(2))(2.

View Article and Find Full Text PDF