The ABA renewal effect occurs when behavior is trained in one context (A), extinguished in a second context (B), and the test occurs in the training context (A). Two mechanisms that explain ABA renewal are context summation at the test and contextual modulation of extinction learning, with the former being unlikely if both contexts have a similar associative history. In two experiments, we used within-subjects designs in which participants learned to avoid a loud noise (unconditioned stimulus) signaled by discrete visual stimuli (conditioned stimuli [CSs]), by pressing the space bar on the computer keyboard.
View Article and Find Full Text PDFReinforcement learning (RL) is thought to underlie the acquisition of vocal skills like birdsong and speech, where sounding like one's "tutor" is rewarding. However, what RL strategy generates the rich sound inventories for song or speech? We find that the standard actor-critic model of birdsong learning fails to explain juvenile zebra finches' efficient learning of multiple syllables. However, when we replace a single actor with multiple independent actors that jointly maximize a common intrinsic reward, then birds' empirical learning trajectories are accurately reproduced.
View Article and Find Full Text PDFExtinction learning suppresses conditioned reward responses and is thus fundamental to adapt to changing environmental demands and to control excessive reward seeking. The medial prefrontal cortex (mPFC) monitors and controls conditioned reward responses. Abrupt transitions in mPFC activity anticipate changes in conditioned responses to altered contingencies.
View Article and Find Full Text PDFA major tenet in theoretical neuroscience is that cognitive and behavioral processes are ultimately implemented in terms of the neural system dynamics. Accordingly, a major aim for the analysis of neurophysiological measurements should lie in the identification of the computational dynamics underlying task processing. Here we advance a state space model (SSM) based on generative piecewise-linear recurrent neural networks (PLRNN) to assess dynamics from neuroimaging data.
View Article and Find Full Text PDFTime series, as frequently the case in neuroscience, are rarely stationary, but often exhibit abrupt changes due to attractor transitions or bifurcations in the dynamical systems producing them. A plethora of methods for detecting such in time series statistics have been developed over the years, in addition to test criteria to evaluate their significance. Issues to consider when developing change point analysis methods include computational demands, difficulties arising from either limited amount of data or a large number of covariates, and arriving at statistical tests with sufficient power to detect as many changes as contained in potentially high-dimensional time series.
View Article and Find Full Text PDFDelays are ubiquitous in biological systems, ranging from genetic regulatory networks and synaptic conductances, to predator/pray population interactions. The evidence is mounting, not only to the presence of delays as physical constraints in signal propagation speed, but also to their functional role in providing dynamical diversity to the systems that comprise them. The latter observation in biological systems inspired the recent development of a computational architecture that harnesses this dynamical diversity, by delay-coupling a single nonlinear element to itself.
View Article and Find Full Text PDFSupplementing a differential equation with delays results in an infinite-dimensional dynamical system. This property provides the basis for a reservoir computing architecture, where the recurrent neural network is replaced by a single nonlinear node, delay-coupled to itself. Instead of the spatial topology of a network, subunits in the delay-coupled reservoir are multiplexed in time along one delay span of the system.
View Article and Find Full Text PDFThe behavior and skills of living systems depend on the distributed control provided by specialized and highly recurrent neural networks. Learning and memory in these systems is mediated by a set of adaptation mechanisms, known collectively as neuronal plasticity. Translating principles of recurrent neural control and plasticity to artificial agents has seen major strides, but is usually hampered by the complex interactions between the agent's body and its environment.
View Article and Find Full Text PDFIt is a long-established fact that neuronal plasticity occupies the central role in generating neural function and computation. Nevertheless, no unifying account exists of how neurons in a recurrent cortical network learn to compute on temporally and spatially extended stimuli. However, these stimuli constitute the norm, rather than the exception, of the brain's input.
View Article and Find Full Text PDF