Publications by authors named "Hazem Abdul-Hussien"

Objective: There is remarkable controversy over the processes driving abdominal aneurysm growth. The inherent limitations of animal and human studies hamper elucidation of the key inflammatory and proteolytic processes. Human data are largely derived from surgical specimens that typically reflect the final stages of the disease process and thus do not allow distinction between primary and secondary processes.

View Article and Find Full Text PDF

An aneurysm of the aorta is a common pathology characterized by segmental weakening of the artery. Although it is generally accepted that the vessel-wall weakening is caused by an impaired collagen metabolism, a clear association has been demonstrated only for rare syndromes such as the vascular type Ehlers-Danlos syndrome. Here we show that vessel-wall failure in growing aneurysms of patients who have aortic abdominal aneurysm (AAA) or Marfan syndrome is not related to a collagen defect at the molecular level.

View Article and Find Full Text PDF

Background: Doxycycline has been shown to effectively inhibit aneurysm formation in animal models of abdominal aortic aneurysm. Although this effect is ascribed to matrix metalloproteinase-9 inhibition, such an effect is unclear in human studies. We reevaluated the effect of doxycycline on aortic wall protease content in a clinical trial and found that doxycycline selectively reduces neutrophil-derived proteases.

View Article and Find Full Text PDF

Background: Matrix metalloproteinase-9 (MMP-9) is thought to play a central role in abdominal aortic aneurysm (AAA) initiation. Doxycycline, a tetracycline analogue, has direct MMP-9-inhibiting properties in vitro, and it effectively suppresses AAA development in rodents. Observed inhibition of AAA progression, and contradictory findings in human studies evaluating the effect of doxycycline therapy on aortic wall MMP-9, suggest that the effects of doxycycline extend beyond MMP-9 inhibition and that the effect may be dose-dependent.

View Article and Find Full Text PDF

Inflammation plays a key role in the pathogenesis of an AAA (abdominal aortic aneurysm); however, the nature of the inflammatory factors and cellular response(s) involved in AAA growth is controversial. In the present study, we set out to determine the aortic levels of inflammatory cytokines in relation to downstream inflammatory transcription factors and cellular responses. A comparison of AAA wall samples with atherosclerotic wall samples taken from the same aortic region allowed AAA-specific inflammatory parameters to be identified that distinguish AAAs from ASD (aortic atherosclerotic disease).

View Article and Find Full Text PDF

Growth and rupture of abdominal aortic aneurysms (AAAs) result from increased collagen turnover. Collagen turnover critically depends on specific collagenases that cleave the triple helical region of fibrillar collagen. As yet, the collagenases responsible for collagen degradation in AAAs have not been identified.

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) is a localized dilatation of the arterial wall as a result of extensive breakdown of its structural proteins by matrix metalloproteinases (MMPs). AAA continuously expand and may eventually rupture, causing high mortality rates. The molecular processes underlying expansion and rupture of AAA are only poorly understood.

View Article and Find Full Text PDF