Publications by authors named "Hazelwood L"

Alterations to post-translational crosslinking modifications in the extracellular matrix (ECM) are known to drive the pathogenesis of fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Thus, the methodology for measuring crosslinking dynamics is valuable for understanding disease progression. The existing crosslinking analysis sample preparation and liquid chromatography tandem mass spectrometry (LC-MS/MS) methods are typically labor-intensive and time-consuming which limits throughput.

View Article and Find Full Text PDF

Fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF) and systemic scleroderma (SSc), are commonly associated with high morbidity and mortality, thereby representing a significant unmet medical need. Interleukin 11 (IL11)-mediated cell activation has been identified as a central mechanism for promoting fibrosis downstream of TGFβ. IL11 signaling has recently been reported to promote fibroblast-to-myofibroblast transition, thus leading to various pro-fibrotic phenotypic changes.

View Article and Find Full Text PDF

Administration of a novel and selective small molecule integrin αvβ6 inhibitor, MORF-627, to young cynomolgus monkeys for 28 days resulted in the rapid induction of epithelial proliferative changes in the urinary bladder of 2 animals, in the absence of test agent genotoxicity. Microscopic findings included suburothelial infiltration by irregular nests and/or trabeculae of epithelial cells, variable cytologic atypia, and high mitotic rate, without invasion into the tunica muscularis. Morphologic features and patterns of tumor growth were consistent with a diagnosis of early-stage invasive urothelial carcinoma.

View Article and Find Full Text PDF

Collagen-producing cells maintain the complex architecture of the lung and drive pathologic scarring in pulmonary fibrosis. Here we perform single-cell RNA-sequencing to identify all collagen-producing cells in normal and fibrotic lungs. We characterize multiple collagen-producing subpopulations with distinct anatomical localizations in different compartments of murine lungs.

View Article and Find Full Text PDF

Microsatellite sequences have an enhanced susceptibility to mutation, and can act as sentinels indicating elevated mutation rates and increased risk of cancer. The probability of mutant fixation within the intestinal epithelium is dictated by a combination of stem cell dynamics and mutation rate. Here, we exploit this relationship to infer microsatellite mutation rates.

View Article and Find Full Text PDF

Breast cancer is the most common cancer in females. The number of years menstruating and length of an individual menstrual cycle have been implicated in increased breast cancer risk. At present, the proliferative changes within an individual reproductive cycle or variations in the estrous cycle in the normal mammary gland are poorly understood.

View Article and Find Full Text PDF

The D dopamine receptor is linked to a variety of neuropsychiatric disorders and represents an attractive drug target for the enhancement of cognition in schizophrenia, Alzheimer disease, and other disorders. Positive allosteric modulators (PAMs), with their potential for greater selectivity and larger therapeutic windows, may represent a viable drug development strategy, as orthosteric D receptor agonists possess known clinical liabilities. We discovered two structurally distinct D receptor PAMs, MLS6585 and MLS1082, via a high-throughput screen of the NIH Molecular Libraries program small-molecule library.

View Article and Find Full Text PDF

Cellular dormancy and heterogeneity in cell cycle length provide important explanations for treatment failure after adjuvant therapy with S-phase cytotoxics in colorectal cancer (CRC), yet the molecular control of the dormant versus cycling state remains unknown. We sought to understand the molecular features of dormant CRC cells to facilitate rationale identification of compounds to target both dormant and cycling tumor cells. Unexpectedly, we demonstrate that dormant CRC cells are differentiated, yet retain clonogenic capacity.

View Article and Find Full Text PDF

Saccharomyces yeast species are currently the most important yeasts involved in industrial-scale food fermentations. However, there are hundreds of other yeast species poorly studied that are highly promising for flavour development, some of which have also been identified in traditional food fermentations. This work explores natural yeast biodiversity in terms of aroma formation, with a particular focus on aromas relevant for industrial fermentations such as wine and beer.

View Article and Find Full Text PDF

DNA based microbial community profiling of food samples is confounded by the presence of DNA derived from membrane compromised (dead or injured) cells. Selective amplification of DNA from viable (intact) fraction of the community by propidium monoazide (PMA) treatment could circumvent this problem. Gouda cheese manufacturing is a proper model to evaluate the use of PMA for selective detection of intact cells since large fraction of membrane compromised cells emerges as a background in the cheese matrix during ripening.

View Article and Find Full Text PDF

Chronic lymphocytic leukaemia (CLL) is the most common clonal B-cell disorder characterized by clonal diversity, a relapsing and remitting course, and in its aggressive forms remains largely incurable. Current front-line regimes include agents such as fludarabine, which act primarily via the DNA damage response pathway. Key to this is the transcription factor p53.

View Article and Find Full Text PDF

Objective: To study whether methylated CpG-island (CGI) amplification coupled with microarray (MCAM) can be used to generate DNA (deoxyribonucleic acid) methylation profiles from single human blastocysts.

Design: A pilot microarray study with methylated CpG-island amplification applied to human blastocyst genomic DNA and hybridized on CpG-island microarrays.

Setting: University research laboratory.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the management of contralateral vesicoureteral reflux in patients undergoing unilateral ureteral reimplantation, noting that most surgeons typically perform bilateral procedures.
  • A retrospective analysis involved 15 children with initially resolved or low-grade contralateral reflux, finding that hospital stays and costs were significantly lower for unilateral procedures compared to bilateral ones.
  • Results indicated that observation of contralateral reflux is a viable option, showing minimal postoperative complications and normal kidney function post-surgery.
View Article and Find Full Text PDF

Experimental models that recapitulate mutational landscapes of human cancers are needed to decipher the rapidly expanding data on human somatic mutations. We demonstrate that mutation patterns in immortalised cell lines derived from primary murine embryonic fibroblasts (MEFs) exposed in vitro to carcinogens recapitulate key features of mutational signatures observed in human cancers. In experiments with several cancer-causing agents we obtained high genome-wide concordance between human tumour mutation data and in vitro data with respect to predominant substitution types, strand bias and sequence context.

View Article and Find Full Text PDF

Gene expression has recently been at the forefront of advance in personalized medicine, notably in the field of cancer and transplantation, providing a rational for a similar approach in rheumatoid arthritis (RA). RA is a prototypic inflammatory autoimmune disease with a poorly understood etiopathogenesis. Inflammation is the main feature of RA; however, many biological processes are involved at different stages of the disease.

View Article and Find Full Text PDF

Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides.

View Article and Find Full Text PDF

Background: Cells in some tissues acquire a polarisation in the plane of the tissue in addition to apical-basal polarity. This polarisation is commonly known as planar cell polarity and has been found to be important in developmental processes, as planar polarity is required to define the in-plane tissue coordinate system at the cellular level.

Results: We have built an in-silico functional model of cellular polarisation that includes cellular asymmetry, cell-cell signalling and a response to a global cue.

View Article and Find Full Text PDF

During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell-cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical-basal (A/B) polarity.

View Article and Find Full Text PDF

Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells.

View Article and Find Full Text PDF

Background: Extra-cellular microRNAs have been identified within blood and their profiles reflect various pathologies; therefore they have potential as disease biomarkers. Our aim was to investigate how circulating microRNA profiles change during cancer treatment. Our hypothesis was that tumour-related profiles are lost after tumour resection and therefore that comparison of profiles before and after surgery would allow identification of biomarker microRNAs.

View Article and Find Full Text PDF

Background: Cellular ATP levels are generated by glucose-stimulated mitochondrial metabolism and determine metabolic responses, such as glucose-stimulated insulin secretion (GSIS) from the β-cells of pancreatic islets. We describe an analysis of the evolutionary processes affecting the core enzymes involved in glucose-stimulated insulin secretion in mammals. The proteins involved in this system belong to ancient enzymatic pathways: glycolysis, the TCA cycle and oxidative phosphorylation.

View Article and Find Full Text PDF

Bacteria artificial chromosome (BAC) transgenic mice expressing the reporter protein enhanced green fluorescent protein (EGFP) under the control of the D1 and D2 dopamine receptor promoters (Drd1-EGFP and Drd2-EGFP) have been widely used to study striatal function and have contributed to our understanding of the physiological and pathological functions of the basal ganglia. These tools were produced and promptly made available to address questions in a cell-specific manner that has transformed the way we frame hypotheses in neuroscience. However, these mice have not been fully characterized until now.

View Article and Find Full Text PDF

Actin capping and cross-linking proteins regulate the dynamics and architectures of different cellular protrusions. Eps8 is the founding member of a unique family of capping proteins capable of side-binding and bundling actin filaments. However, the structural basis through which Eps8 exerts these functions remains elusive.

View Article and Find Full Text PDF

The receptor for advanced glycation end products (RAGE) is a signaling receptor protein of the immunoglobulin superfamily implicated in multiple pathologies. It binds a diverse repertoire of ligands, but the structural basis for the interaction of different ligands is not well understood. We earlier showed that carboxylated glycans on the V-domain of RAGE promote the binding of HMGB1 and S100A8/A9.

View Article and Find Full Text PDF