Chitosan chemical functionalization is a powerful tool to provide novel materials for additive manufacturing strategies. The main aim of this study was the employment of computer-aided wet spinning (CAWS) for the first time to design and fabricate carboxymethyl chitosan (CMCS) scaffolds. For this purpose, the synthesis of a chitosan derivative with a high degree of O-substitution (1.
View Article and Find Full Text PDFWe designed and characterized chitosan-caseinate fibers processed through wet spinning for biomedical applications such as drug delivery from knitted medical devices. Sodium caseinate was either incorporated directly into the chitosan dope or allowed to diffuse into the chitosan hydrogel from a coagulation bath containing sodium caseinate and sodium hydroxide (NaOH). The latter route, where caseinate was incorporated in the neutralization bath, produced fibers with better mechanical properties for textile applications than those formed by the chitosan-caseinate mixed collodion route.
View Article and Find Full Text PDFChitosan is a cationic polysaccharide that is usually obtained by alkaline deacetylation of chitin poly(-acetylglucosamine). It is biocompatible, biodegradable, mucoadhesive, and non-toxic. These excellent biological properties make chitosan a good candidate for a platform in developing drug delivery systems having improved biodistribution, increased specificity and sensitivity, and reduced pharmacological toxicity.
View Article and Find Full Text PDFThermosensitive macroporous scaffolds of poly(N-isopropylacrylamide) (polyNIPA) loaded with chitosan/bemiparin nanoparticles are prepared by the free radical polymerization in cryogenic conditions. Chitosan/bemiparin nanoparticles of 102 ± 6.5 nm diameter are prepared by complex coacervation and loaded into polyNIPA cryogels.
View Article and Find Full Text PDF