Novel scaffolds for broad-spectrum antibiotics are rare and in strong demand because of the increase in antimicrobial resistance. The cystobactamids, discovered from myxobacterial sources, have a unique hexapeptidic scaffold with five arylamides and possess potent, resistance-breaking properties. This study investigates the role of the central D-ring pharmacophore in cystobactamids, a para-aminobenzoic acid (PABA) moiety that is additionally substituted by hydroxy and isopropoxy functions.
View Article and Find Full Text PDFWe present the second total synthesis of (±)-acanthodoral, a sesquiterpenoid derived from the marine nudibranch . Our approach involves a concise three-step transformation from a previously reported compound, resulting in the formation of a less strained precursor of the bicyclo[3.1.
View Article and Find Full Text PDFWe herein report a novel chemically triggered click-to-release system, that combines the trimethyl lock (TML) lactonization with the bioorthogonal inverse electron demand Diels-Alder (IEDDA) reaction of a vinyl ether and a tetrazine. Kinetic studies were carried out on a vinyl phenol model system with six tetrazines using NMR and UV/Vis spectroscopy, revealing that within the three step sequence the IEDDA reaction was rate-limiting. The reaction rates were enhanced by increasing the electrophilicity of the tetrazine, while balancing reactivity and stability of the tetrazines.
View Article and Find Full Text PDFThe growing antibiotic resistance, foremost in Gram-negative bacteria, requires novel therapeutic approaches. We aimed to enhance the potency of well-established antibiotics targeting the RNA polymerase (RNAP) by utilizing the microbial iron transport machinery to improve drug translocation across their cell membrane. As covalent modifications resulted in moderate-low antibiotic activity, cleavable linkers were designed that permit a release of the antibiotic payload inside the bacteria and unperturbed target binding.
View Article and Find Full Text PDFEmerging antimicrobial resistance urges the discovery of antibiotics with unexplored, resistance-breaking mechanisms. Armeniaspirols represent a novel class of antibiotics with a unique spiro[4.4]non-8-ene scaffold and potent activities against Gram-positive pathogens.
View Article and Find Full Text PDFMasked trimethyl lock (TML) systems as molecular moieties enabling the bioresponsive release of compounds or dyes in a controlled temporal and spatial manner have been widely applied for the development of drug conjugates, prodrugs or molecular imaging tools. Herein, we report the development of a novel amino trimethyl lock (H N-TML) system as an auto-immolative molecular entity for the release of fluorophores. We designed Cou-TML-N and MURh-TML-N , two azide-masked turn-on fluorophores.
View Article and Find Full Text PDFPolysialic acid is a glycan modification of the neural cell adhesion molecule (NCAM) produced by the polysialyltransferases ST8SIA2 and ST8SIA4. Polysialic acid has been detected in multiple sclerosis plaques, but its beneficial or adverse role in remyelination is elusive. Here, we show that, despite a developmental delay, myelination at the onset and during cuprizone-induced demyelination was unaffected in male or mice.
View Article and Find Full Text PDFOligo- and polysaccharides have myriad applications as therapeutic reagents from glycoconjugate vaccines to matrices for tissue engineering. Polysaccharide length may vary over several orders of magnitude and is a critical determinant of both their physical properties and biological activities. Therefore, the tailored synthesis of oligo- and polysaccharides of defined size is a major goal for glycoengineering.
View Article and Find Full Text PDFThe enteropathogenic Escherichia coli K92 synthesizes a unique capsule consisting of polysialic acid (polySia) with alternating α2,8- and α2,9-linkages. The fact that a single enzyme is responsible for the synthesis of these alternating regioisomeric linkages raises questions as to how this controlled bifunctionality is achieved mechanistically. Aiming to identify the sequence elements responsible for dual regiospecificity, we have utilized a high-throughput polysialyltransferase (polyST) activity screen to explore the relevant sequence space between this enzyme and its close monofunctional homolog from E.
View Article and Find Full Text PDF