Publications by authors named "Hazel Gibson"

The need for more advantageous and pharmaceutically active wound dressings is a pressing matter in the area of wound management. In this study, we explore the possibility of incorporating thymoquinone within bacterial cellulose, utilising cyclodextrins as a novel method of solubilising hydrophobic compounds. The thymoquinone was not soluble in water, so was incorporated within hydroxypropyl-β-cyclodextrin before use.

View Article and Find Full Text PDF

The antimicrobial activity of the essential oils of black pepper (BPE) and cinnamon bark (CE) extracts against was assessed in pasteurized full cream milk during and post-fermentation. The milk was fermented with 1% (/) of subspecies (NCIMB 11778) and (NCIMB 10387) (approx. 10 cfu/mL each) and incubated and stored at 25 °C for 5 days (144 h) or at 43 °C for 24 h and then stored at 25 °C for 120 h.

View Article and Find Full Text PDF

An increase in antifungal resistance has seen a surge in fungal wound infections in patients who are immunocompromised resulting from chemotherapy, disease, and burns. Human pathogenic fungi are increasingly becoming resistant to a sparse repertoire of existing antifungal drugs, which has given rise to the need to develop novel treatments for potentially lethal infections. Bacterial cellulose (BC) produced by has been shown to possess many properties that make it innately useful as a next-generation biopolymer to be utilised as a wound dressing.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is emerging as a global threat to public health. One of the strategies employed to combat AMR is the use of adjuvants which act to enhance or reinstate antimicrobial activity by inhibiting resistance mechanisms. However, these adjuvants are themselves not immune to selecting resistant phenotypes.

View Article and Find Full Text PDF

Bacterial cellulose (BC) is an extracellular polymer produced by which has been shown to possess a multitude of properties, which makes it innately useful as a next-generation biopolymer. The structure of BC is comprised of glucose monomer units polymerised by cellulose synthase in β-1-4 glucan chains which form uniaxially orientated BC fibril bundles which measure 3-8 nm in diameter. BC is chemically identical to vegetal cellulose.

View Article and Find Full Text PDF

Acidic amino acids, aspartic acid (Asp) and glutamic acid (Glu) can enhance the solubility of many poorly soluble drugs including ciprofloxacin (Cip). One of the mechanisms of resistance within a biofilm is retardation of drug diffusion due to poor penetration across the matrix. To overcome this challenge, this work set to investigate novel counter ion approach with acidic amino acids, which we hypothesised will disrupt the biofilm matrix as well as simultaneously improve drug effectiveness.

View Article and Find Full Text PDF

Chronic wounds are often recalcitrant to treatment because of high microbial bioburden and the problem of microbial resistance. Silver is a broad-spectrum natural antimicrobial agent with wide applications extending to proprietary wound dressings. Recently, silver nanoparticles have attracted attention in wound management.

View Article and Find Full Text PDF