Publications by authors named "Hazel England"

Cells respond to inflammatory stimuli such as cytokines by activation of the nuclear factor-κB (NF-κB) signalling pathway, resulting in oscillatory translocation of the transcription factor p65 between nucleus and cytoplasm in some cell types. We investigate the relationship between p65 and inhibitor-κB⍺ (IκBα) protein levels and dynamic properties of the system, and how this interaction impacts on the expression of key inflammatory genes. Using bacterial artificial chromosomes, we developed new cell models of IκB⍺-eGFP protein overexpression in a pseudo-native genomic context.

View Article and Find Full Text PDF

The NFκB transcription factors are major regulators of innate immune responses, and NFκB signal pathway dysregulation is linked to inflammatory disease. Here, we utilised bone marrow-derived macrophages from the p65-DsRedxp/IκBα-eGFP transgenic strain to study the functional implication of xenogeneic (human) RelA(p65) protein introduced into the mouse genome. Confocal imaging showed that human RelA is expressed in the cells and can translocate to the nucleus following activation of Toll-like receptor 4.

View Article and Find Full Text PDF
Article Synopsis
  • Inflammatory bowel diseases (IBDs) have serious health implications, with altered NF-κB signaling linked to their onset, prompting researchers to explore drug repositioning to target this pathway.
  • The SysmedIBD Consortium developed a new pipeline to identify existing drugs that affect NF-κB signaling and tested them in animal models, finding that clarithromycin, a macrolide antibiotic, ranked highest for its anti-inflammatory potential.
  • Experimental results showed clarithromycin's ability to modulate NF-κB activity and reduce colitis severity, suggesting it could be a promising candidate for further clinical trials in IBD treatment.
View Article and Find Full Text PDF

Single-cell gene expression is inherently variable, but how this variability is controlled in response to stimulation remains unclear. Here, we use single-cell RNA-seq and single-molecule mRNA counting (smFISH) to study inducible gene expression in the immune toll-like receptor system. We show that mRNA counts of tumor necrosis factor α conform to a standard stochastic switch model, while transcription of interleukin-1β involves an additional regulatory step resulting in increased heterogeneity.

View Article and Find Full Text PDF

The heterogeneous nature of inflammatory bowel disease (IBD) presents challenges, particularly when choosing therapy. Activation of the NF-κB transcription factor is a highly regulated, dynamic event in IBD pathogenesis. Using a lentivirus approach, NF-κB-regulated luciferase was expressed in patient macrophages, isolated from frozen peripheral blood mononuclear cell samples.

View Article and Find Full Text PDF

Toll-like receptor (TLR) signaling regulates macrophage activation and effector cytokine propagation in the constrained environment of a tissue. In macrophage populations, TLR4 stimulates the dose-dependent transcription of nuclear factor κB (NF-κB) target genes. However, using single-RNA counting, we found that individual cells exhibited a wide range (three orders of magnitude) of expression of the gene encoding the proinflammatory cytokine tumor necrosis factor-α (TNF-α).

View Article and Find Full Text PDF

NLRP3 is a receptor important for host responses to infection, yet is also known to contribute to devastating diseases such as Alzheimer's disease, diabetes, atherosclerosis, and others, making inhibitors for NLRP3 sought after. One of the inhibitors currently in use is 2-aminoethoxy diphenylborinate (2APB). Unfortunately, in addition to inhibiting NLRP3, 2APB also displays non-selective effects on cellular Ca homeostasis.

View Article and Find Full Text PDF

TCR signaling pathways cooperate to activate the inducible transcription factors NF-κB, NFAT, and AP-1. In this study, using the calcium ionophore ionomycin and/or PMA on Jurkat T cells, we show that the gene expression program associated with activation of TCR signaling is closely related to specific chromatin landscapes. We find that calcium and kinase signaling cooperate to induce chromatin remodeling at ∼2100 chromatin regions, which demonstrate enriched binding motifs for inducible factors and correlate with target gene expression.

View Article and Find Full Text PDF

The cytokine interleukin-1 (IL-1) has two main pro-inflammatory forms, IL-1α and IL-1β, which are central to host responses to infection and to damaging sterile inflammation. Processing of IL-1 precursor proteins to active cytokines commonly occurs through activation of proteases, notably caspases and calpains. These proteases are instrumental in cell death, and inflammation and cell death are closely associated, hence we sought to determine the impact of cell death pathways on IL-1 processing and release.

View Article and Find Full Text PDF

The availability of genetically altered cells is an essential prerequisite for many scientific and therapeutic applications including functional genomics, drug development, and gene therapy. Unfortunately, the efficient gene transfer into primary cells is still problematic. In contrast to transfections of most cell lines, which can be successfully performed using a variety of methods, the introduction of foreign DNA into primary cells requires a careful selection of gene transfer techniques.

View Article and Find Full Text PDF