Publications by authors named "Haytam Kasem"

Biomimetic micro-hexagonal-textured surfaces have sparked interest for their application in fields that demand high friction and adhesion, such as micro-robotics and biomedicine. Despite extensive research conducted on this specific microstructure, its friction behavior against soft counterfaces remains a topic that has not been fully investigated yet. This study examines how micro-hexagon textures behave when they come into contact with engineered and biological materials like gelatin and chicken skin in dry and wet conditions.

View Article and Find Full Text PDF

The effects of mechanical properties and contact environment conditions on the adhesiveness of the biomimetic adhesive mushroom-shaped micro-structure have been experimentally investigated. The idea is based on the adhesive micro-structures and surfaces inspired by nature after observing the abilities of some animals. Applications are proposed in various fields of engineering and technology.

View Article and Find Full Text PDF

In biology and medicine, intrinsically disordered synthetic polymers bio-mimicking intrinsically disordered proteins, which lack stable three-dimensional structures, possess high structural/conformational flexibility. They are prone to self-organization and can be extremely useful in various biomedical applications. Among such applications, intrinsically disordered synthetic polymers can have potential usage in drug delivery, organ transplantation, artificial organ design, and immune compatibility.

View Article and Find Full Text PDF

Objectives: To compare the lumbosacral nerve distances (LNDs) and sacroiliac joint (SIJ) morphology in individuals with nonspecific chronic low back pain (NSCLBP) and control and examine their correlations with pain and dysfunction in the former.

Materials And Methods: The sample includes 200 adult patients (ranging from 20 to 50 years old) referred for computerized abdominal tomography (CT): 100 individuals with NSCLBP (50 males and 50 females) and 100 individuals without NSCLBP (50 males and 50 females). CT scans were assessed for LNDs, degenerative sacroiliac changes, and joint bridging.

View Article and Find Full Text PDF

Transdermal drug delivery systems are a useful and minimally invasive alternative to other drug administration routes. Biodegradable polymeric microneedles (MNs) are widely used in controlled-release drug delivery due to their tunable properties and ease of patient self-administration. Polylactic--glycolic acid (PLGA) is often used for sustained drug release owing to special intrinsic properties including biocompatibility and biodegradability, which offer excellent applicability in preparing MNs.

View Article and Find Full Text PDF

Biomimetic adhesive surfaces have a number of potential applications in the pharmaceutical and biomedical fields. Fabrication techniques must be adapted to biocompatible and biodegradable materials required for controlled drug release applications. In this study biomimetic adhesive poly(lactic-co-glycolic acid) (PLGA) films loaded with different concentrations of clotrimazole (CTZ) were prepared without combining other adhesive excipients as a controlled release system for potential local oral drug delivery.

View Article and Find Full Text PDF

Hairy adhesive systems involved in gecko locomotion have drawn the interest of many researchers regarding the development of bionic solutions for fast and reversible adhesive technologies. To date, despite extensive efforts to design gecko-inspired adhesive surfaces, adhesion and friction capacities are often evaluated using smooth and rigid counterfaces, in general glass, whereas most natural and artificial surfaces inevitably have a certain level of roughness. For that reason, in this study experiments tested the effects of the substrate roughness on the friction of bionic wale-shaped microstructures for gecko-like attachments.

View Article and Find Full Text PDF

Most biological hairy adhesive systems involved in locomotion rely on spatula-shaped terminal elements, whose operation has been actively studied during the last decade. However, though functional principles underlying their amazing performance are now well understood, due to technical difficulties in manufacturing the complex structure of hierarchical spatulate systems, a biomimetic surface structure featuring true shear-induced dynamic attachment still remains elusive. To try bridging this gap, a novel method of manufacturing gecko-like attachment surfaces is devised based on a laser-micromachining technology.

View Article and Find Full Text PDF

In this study, the effect of the substrate roughness on adhesion of mushroom-shaped microstructure was experimentally investigated. To do so, 12 substrates having different isotropic roughness were prepared from the same material by replicating topography of different surfaces. The pull-off forces generated by mushroom-shaped microstructure in contact with the tested substrates were measured and compared with the pull-off forces generated by a smooth reference.

View Article and Find Full Text PDF