Publications by authors named "Hayley V Powell"

Evanescent wave cavity ringdown spectroscopy (EW-CRDS) is advocated as an approach for monitoring the formation of supported lipid bilayers (SLBs) on quartz substrates in situ and for the quantitative study of fast molecular adsorption kinetics at the resulting modified biomimetic surface. This approach is illustrated using SLBs of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). Complementary atomic force microscopy (AFM) and quartz crystal microbalance with dissipation (QCM-D) measurements confirm the formation of bilayers on quartz.

View Article and Find Full Text PDF

We report the use of evanescent wave cavity ring-down spectroscopy (EW-CRDS) to monitor the reduction by ethylenediaminetetraacetic acid iron(II) complex, [FeEDTA](2-), of an adsorbed layer of oxidized cytochrome c immobilized on fused silica. The adsorption of cytochrome c at the silica-water interface was also probed using EW-CRDS and found to be in qualitative agreement with previous studies. The reduction of the adsorbed cytochrome c was achieved by using a strategically positioned electrode to electrogenerate FeEDTA(2-), which diffused to the silica surface and reduced the cytochrome c.

View Article and Find Full Text PDF

Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been used to study in situ the kinetics of the adsorption of 5,10,15,20-tetrakis(4-N-methylpyridiniumyl)porphyrin (TMPyP) from pH 7.4 phosphate buffer solution (PBS) to the silica-water interface and the interaction of calf thymus DNA (CT-DNA) with the resulting TMPyP-functionalized surface. TMPyP was delivered to the silica surface using an impinging jet technique to allow relatively fast surface kinetics to be accessed.

View Article and Find Full Text PDF

Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been used to study the interaction of the tris(2,2'-bipyridine)ruthenium(II) complex, [Ru(bpy)(3)](2+), at both native silica surfaces and surfaces modified with polyelectrolyte films. Both poly-l-lysine (PLL) and PLL/poly-l-glutamic acid (PGA) bilayer functionalized interfaces have been studied. Concentration isotherms exhibit Langmuir-type adsorption behavior on both silica and PGA-terminated surfaces from which equilibrium constants have been derived.

View Article and Find Full Text PDF