To maintain tissue integrity during epithelial morphogenesis, adherens junctions (AJs) must resist the mechanical stresses exerted by dynamic tissue movements. Junctional stability is dependent on actomyosin contractility within the actin ring. Here we describe a novel function for the axon guidance receptor, Neogenin, as a key component of the actin nucleation machinery governing junctional stability.
View Article and Find Full Text PDFActomyosin at the epithelial zonula adherens (ZA) generates junctional tension for tissue integrity and morphogenesis. This requires the RhoA GTPase, which establishes a strikingly stable active zone at the ZA. Mechanisms must then exist to confer robustness on junctional RhoA signalling at the population level.
View Article and Find Full Text PDFE-cadherin cell-cell junctions couple the contractile cortices of epithelial cells together, generating tension within junctions that influences tissue organization. Although junctional tension is commonly studied at the apical zonula adherens, we now report that E-cadherin adhesions induce the contractile actomyosin cortex throughout the apical-lateral axis of junctions. However, cells establish distinct regions of contractile activity even within individual contacts, producing high tension at the zonula adherens but substantially lower tension elsewhere.
View Article and Find Full Text PDFClassic cadherin receptors cooperate with regulators of the actin cytoskeleton to control tissue organization in health and disease. At the apical junctions of epithelial cells, the cadherin ring of the zonula adherens (ZA) couples with a contiguous ring of actin filaments to support morphogenetic processes such as tissue integration and cellular morphology. However, the molecular mechanisms that coordinate adhesion and cytoskeleton at these junctions are poorly understood.
View Article and Find Full Text PDF