Standard-of-care medical imaging techniques such as CT, MRI, and PET play a critical role in managing patients diagnosed with metastatic cutaneous melanoma. Advancements in artificial intelligence (AI) techniques, such as radiomics, machine learning, and deep learning, could revolutionize the use of medical imaging by enhancing individualized image-guided precision medicine approaches. In the present article, we will decipher how AI/radiomics could mine information from medical images, such as tumor volume, heterogeneity, and shape, to provide insights into cancer biology that can be leveraged by clinicians to improve patient care both in the clinic and in clinical trials.
View Article and Find Full Text PDFHER2 (Human Epidermal Growth Factor Receptor 2)-positive breast cancer is characterized by amplification of the HER2 gene and is associated with more aggressive tumor growth, increased risk of metastasis, and poorer prognosis when compared to other subtypes of breast cancer. HER2 expression is therefore a critical tumor feature that can be used to diagnose and treat breast cancer. Moving forward, advances in HER2 in vivo imaging, involving the use of techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), may allow for a greater role for HER2 status in guiding the management of breast cancer patients.
View Article and Find Full Text PDF