Publications by authors named "Hayk Barseghyan"

Chromosome analysis (CA) and chromosomal microarray analysis (CMA) have been successfully used to diagnose genetic disorders. However, many conditions remain undiagnosed due to limitations in resolution (CA) and detection of only unbalanced events (CMA). Optical genome mapping (OGM) has the potential to address these limitations by capturing both structural variants (SVs) resulting in copy number changes and balanced rearrangements with high resolution.

View Article and Find Full Text PDF

Objectives: Distinguishing between sporadic and germline/mosaic NF2-related schwannomatosis is important to ensure that patients have appropriate long-term care. With this report, we describe a unique case of a patient with 4 ipsilateral schwannomas and identify a combination of sequencing modalities that can accurately diagnose mosaic NF2-related schwannomatosis.

Methods: We present a 32-year-old woman with a familial history of vestibular schwannoma in her father and right-sided schwannomas involving the apical and basal turns of cochlea, lateral semicircular canal, and internal auditory canal (IAC).

View Article and Find Full Text PDF

Background: Genome Mapping Technologies (optical and electronic) use ultra-high molecular weight DNA to detect structural variation and have application in constitutional genetic disorders, hematological neoplasms, and solid tumors. Genome mapping can detect balanced and unbalanced structural variation, copy number changes, and haplotypes. The technique is analogous to chromosomal microarray analysis, although genome mapping has the added benefit of being able to detect and ascertain the nature of more abnormalities in a single assay than array, karyotyping, or FISH alone.

View Article and Find Full Text PDF

The recommended practice for individuals suspected of a genetic etiology for disorders including unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), and multiple congenital anomalies (MCA) involves a genetic testing workflow including chromosomal microarray (CMA), Fragile-X testing, karyotype analysis, and/or sequencing-based gene panels. Since genomic imbalances are often found to be causative, CMA is recommended as first tier testing for many indications. Optical genome mapping (OGM) is an emerging next generation cytogenomic technique that can detect not only copy number variants (CNVs), triploidy and absence of heterozygosity (AOH) like CMA, but can also define the location of duplications, and detect other structural variants (SVs), including balanced rearrangements and repeat expansions/contractions.

View Article and Find Full Text PDF

Autosomal-recessive polycystic kidney disease (ARPKD; MIM #263200) is a severe, hereditary, hepato-renal fibrocystic disorder that causes early childhood morbidity and mortality. Mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, which encodes the protein fibrocystin/polyductin complex (FPC), cause all typical forms of ARPKD. Several mouse lines carrying diverse, genetically engineered disruptions in the orthologous Pkhd1 gene have been generated, but none expresses the classic ARPKD renal phenotype.

View Article and Find Full Text PDF
Article Synopsis
  • - More than 50% of individuals with suspected Mendelian conditions do not receive a clear molecular diagnosis despite advancements like exome sequencing, due to technical limitations and the complexity of genetic information.
  • - Clinical evaluations often involve specialists outside of genetics, and there is confusion about how to proceed after inconclusive results, with newer testing methods not yet widely available.
  • - The article provides a framework for further investigation after negative genetic evaluations, discussing emerging technologies and offering guidance on when to consider referrals to research consortia for rare genetic disorders.
View Article and Find Full Text PDF

The molecular characteristics of pediatric brain tumors have not only allowed for tumor subgrouping but have led to the introduction of novel treatment options for patients with specific tumor alterations. Therefore, an accurate histologic and molecular diagnosis is critical for optimized management of all pediatric patients with brain tumors, including central nervous system embryonal tumors. We present a case where optical genome mapping identified a ZNF532::NUTM1 fusion in a patient with a unique tumor best characterized histologically as a central nervous system embryonal tumor with rhabdoid features.

View Article and Find Full Text PDF
Article Synopsis
  • Despite advances in genetic testing like exome sequencing, over 50% of individuals with suspected Mendelian conditions still don’t receive a definitive diagnosis due to various factors, including technical limitations and incomplete understanding of genetic variants.
  • Many clinical evaluations are now performed by specialists outside of genetics, often stopping after exome sequencing, which leaves a gap in understanding newer diagnostic methods and their limitations.
  • The article outlines reasons for negative genetic evaluations, suggests questions for further inquiry, and provides a framework for subsequent investigation and referrals to specialized consortia for unresolved genetic disorders.
View Article and Find Full Text PDF

Motivation: While promoter methylation is associated with reinforcing fundamental tissue identities, the methylation status of distant enhancers was shown by genome-wide association studies to be a powerful determinant of cell-state and cancer. With recent availability of long reads that report on the methylation status of enhancer-promoter pairs on the same molecule, we hypothesized that probing these pairs on the single-molecule level may serve the basis for detection of rare cancerous transformations in a given cell population. We explore various analysis approaches for deconvolving cell-type mixtures based on their genome-wide enhancer-promoter methylation profiles.

View Article and Find Full Text PDF

Background: Currently available structural variant (SV) detection methods do not span the complete spectrum of disease-causing SVs. Optical genome mapping (OGM), an emerging technology with the potential to resolve diagnostic dilemmas, was performed to investigate clinically-relevant SVs in a 4-year-old male with an epileptic encephalopathy of undiagnosed molecular origin.

Methods: OGM was utilized to image long, megabase-size DNA molecules, fluorescently labeled at specific sequence motifs throughout the genome with high sensitivity for detection of SVs greater than 500 bp in size.

View Article and Find Full Text PDF

Global medical associations (ACOG, ISUOG, ACMG) recommend diagnostic prenatal testing for the detection and prevention of genetic disorders. Historically, cytogenetic methods such as karyotype analysis, fluorescent in situ hybridization (FISH) and chromosomal microarray (CMA) are utilized worldwide to diagnose common syndromes. However, the limitations of each of these methods, either performed in tandem or simultaneously, demonstrates the need of a revolutionary technology that can alleviate the need for multiple technologies.

View Article and Find Full Text PDF

Background: Whole genome sequencing is effective at identification of small variants, but because it is based on short reads, assessment of structural variants (SVs) is limited. The advent of Optical Genome Mapping (OGM), which utilizes long fluorescently labeled DNA molecules for de novo genome assembly and SV calling, has allowed for increased sensitivity and specificity in SV detection. However, compared to small variant annotation tools, OGM-based SV annotation software has seen little development, and currently available SV annotation tools do not provide sufficient information for determination of variant pathogenicity.

View Article and Find Full Text PDF

Context: 46,XY Gonadal dysgenesis (GD) is a heterogeneous group of disorders with a wide phenotypic spectrum, including embryonic testicular regression syndrome (ETRS).

Objective: To report a gene for 46,XY GD etiology, especially for ETRS.

Design: Screening of familial cases of 46,XY GD using whole-exome sequencing and sporadic cases by target gene-panel sequencing.

View Article and Find Full Text PDF

The medical and psychosocial challenges faced by patients living with Disorders/Differences of Sex Development (DSD) and their families can be alleviated by a rapid and accurate diagnostic process. Clinical diagnosis of DSD is limited by a lack of standardization of anatomical and endocrine phenotyping and genetic testing, as well as poor genotype/phenotype correlation. Historically, DSD genes have been identified through positional cloning of disease-associated variants segregating in families and validation of candidates in animal and in vitro modeling of variant pathogenicity.

View Article and Find Full Text PDF

We report on the development of a methylation analysis workflow for optical detection of fluorescent methylation profiles along chromosomal DNA molecules. In combination with Bionano Genomics genome mapping technology, these profiles provide a hybrid genetic/epigenetic genome-wide map composed of DNA molecules spanning hundreds of kilobase pairs. The method provides kilobase pair-scale genomic methylation patterns comparable to whole-genome bisulfite sequencing (WGBS) along genes and regulatory elements.

View Article and Find Full Text PDF

The elegant developmental biology experiments conducted in the 1940s by French physiologist Alfred Jost demonstrated that the sexual phenotype of a mammalian embryo depended whether the embryonic gonad develops into a testis or not. In humans, anomalies in the processes that regulate development of chromosomal, gonadal or anatomic sex result in a spectrum of conditions termed Disorders/Differences of Sex Development (DSD). Each of these conditions is rare, and understanding of their genetic etiology is still incomplete.

View Article and Find Full Text PDF

Background: Disorders of sex development (DSD) have an estimated frequency of 0.5% of live births encompassing a variety of urogenital anomalies ranging from mild hypospadias to a discrepancy between sex chromosomes and external genitalia. In order to identify the underlying genetic etiology, we had performed exome sequencing in a subset of DSD cases with 46,XY karyotype and were able to identify the causative genetic variant in 35% of cases.

View Article and Find Full Text PDF

Background: Massively parallel DNA sequencing, such as exome sequencing, has become a routine clinical procedure to identify pathogenic variants responsible for a patient's phenotype. Exome sequencing has the capability of reliably identifying inherited and de novo single-nucleotide variants, small insertions, and deletions. However, due to the use of 100-300-bp fragment reads, this platform is not well powered to sensitively identify moderate to large structural variants (SV), such as insertions, deletions, inversions, and translocations.

View Article and Find Full Text PDF

Investigation of disorders of sex development (DSD) has resulted in the discovery of multiple sex-determining genes. MAP3K1 encodes a signal transduction regulator in the sex determination pathway and is emerging as one of the more common genes responsible for 46,XY DSD presenting as complete or partial gonadal dysgenesis. Clinical assessment, endocrine evaluation, and genetic analysis were performed in six individuals from four unrelated families with 46,XY DSD.

View Article and Find Full Text PDF

The mechanisms by which sex differences in the mammalian brain arise are poorly understood, but are influenced by a combination of underlying genetic differences and gonadal hormone exposure. Using a mouse embryonic neural stem cell (eNSC) model to understand early events contributing to sexually dimorphic brain development, we identified novel interactions between chromosomal sex and hormonal exposure that are instrumental to early brain sex differences. RNA-sequencing identified 103 transcripts that were differentially expressed between XX and XY eNSCs at baseline (FDR = 0.

View Article and Find Full Text PDF

Cell lineages of the early human gonad commit to one of the two mutually antagonistic organogenetic fates, the testis or the ovary. Some individuals with a 46,XX karyotype develop testes or ovotestes (testicular or ovotesticular disorder of sex development; TDSD/OTDSD), due to the presence of the testis-determining gene, SRY Other rare complex syndromic forms of TDSD/OTDSD are associated with mutations in pro-ovarian genes that repress testis development (e.g.

View Article and Find Full Text PDF

Study Question: Can whole exome sequencing (WES) and in vitro validation studies be used to find the causative genetic etiology in a patient with primary ovarian failure and infertility?

Summary Answer: A novel follicle-stimulating hormone receptor (FSHR) mutation was found by WES and shown, via in vitro flow cytometry studies, to affect membrane trafficking.

What Is Known Already: WES may diagnose up to 25-35% of patients with suspected disorders of sex development (DSD). FSHR mutations are an extremely rare cause of 46, XX gonadal dysgenesis with primary amenorrhea due to hypergonadotropic ovarian failure.

View Article and Find Full Text PDF

Context: Disorders of sex development (DSD) are clinical conditions where there is a discrepancy between the chromosomal sex and the phenotypic (gonadal or genital) sex of an individual. Such conditions can be stressful for patients and their families and have historically been difficult to diagnose, especially at the genetic level. In particular, for cases of 46,XY gonadal dysgenesis, once variants in SRY and NR5A1 have been ruled out, there are few other single gene tests available.

View Article and Find Full Text PDF