Background: Technologies such as ELISA, MSD, and Gyrolab have been employed for quantifying protein therapeutics in clinical trials. However, these technologies have limitations with dynamic range often requiring multiple dilution steps, introducing potential errors and variability.
Results/methodology: A pharmacokinetics assay was successfully developed on the NUcleic acid Linked Immuno-Sandwich Assay (NULISA) platform with a concentration dynamic range exceeding 6 logs.
Background: Phosphorylated tau (p-tau) is a specific blood biomarker for Alzheimer's disease (AD) pathology. Multiple p-tau biomarkers on several analytical platforms are poised for clinical use. The Alzheimer's Association Global Biomarker Standardisation Consortium plasma phospho-tau Round Robin study engaged assay developers in a blinded case-control study on plasma p-tau, aiming to learn which assays provide the largest fold-changes in AD compared to non-AD, have the strongest relationship between plasma and cerebrospinal fluid (CSF), and show the most consistent relationships between methods (commutability) in measuring both patient samples and candidate reference materials (CRM).
View Article and Find Full Text PDFPlast Reconstr Surg Glob Open
February 2021
Unlabelled: Human acellular dermal matrices (hADMs) are applied in various soft tissue reconstructive surgeries as scaffolds to support tissue remodeling and regeneration. To evaluate the clinical efficacy of hADM implants, it is integral that the hADM does not induce a host chronic inflammatory response leading to fibrotic encapsulation of the implant. In this study, we characterized the inflammatory and fibrosis-related tissue remodeling response of 2 commercial hADM products (SimpliDerm and AlloDerm RTU) in a nonhuman primate model using histology and gene expression profiling.
View Article and Find Full Text PDFVascular smooth muscle cells (SMC) play an essential role in remodeling the vasculature during disease progression. Induced pluripotent stem cells (iPSC) provide an attractive approach to obtain autologous SMC source for patient-specific disease modeling. Here we discuss the current methods to 1) derive functional SMC from iPSC, 2) model vascular diseases using SMC generated from patient-derived iPSC, and 3) modulate microenvironmental cues to enhance cellular differentiation and functionality and better mimic the physiological environment.
View Article and Find Full Text PDFAccess to smooth muscle cells (SMC) would create opportunities for tissue engineering, drug testing, and disease modeling. Herein we report the direct conversion of human endothelial progenitor cells (EPC) to induced smooth muscle cells (iSMC) by induced expression of MYOCD. The EPC undergo a cytoskeletal rearrangement resembling that of mesenchymal cells within 3 days post initiation of MYOCD expression.
View Article and Find Full Text PDFTissue-engineered blood vessels (TEBV) can serve as vascular grafts and may also play an important role in the development of organs-on-a-chip. Most TEBV construction involves scaffolding with biomaterials such as collagen gel or electrospun fibrous mesh. Hypothesizing that a scaffold-free TEBV may be advantageous, we constructed a tubular structure (1 mm i.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2015
Wound healing is a dynamic and complex process of replacing missing or dead cell structures and tissue layers. The aim of this research is to discover biocompatible materials and drugs that can promote cell migration in the wound area and thus enhance desirable wound healing effects. In this paper, we report that PDMS nanogratings could accelerate the migration of epithelial cells along the grating axis, and the addition of Imatinib could further increase the epithelial cell wound healing speed to 1.
View Article and Find Full Text PDFTransgene insertion plays an important role in gene therapy and in biological studies. Transposon-based systems that integrate transgenes by transposase-catalyzed "cut-and-paste" mechanism have emerged as an attractive system for transgenesis. Hyperactive piggyBac transposon is particularly promising due to its ability to integrate large transgenes with high efficiency.
View Article and Find Full Text PDFGene activation by the CRISPR/Cas9 system has the potential to enable new approaches to science and medicine, but the technology must be enhanced to robustly control cell behavior. We show that the fusion of two transactivation domains to Cas9 dramatically enhances gene activation to a level that is necessary to reprogram cell phenotype. Targeted activation of the endogenous Myod1 gene locus with this system led to stable and sustained reprogramming of mouse embryonic fibroblasts into skeletal myocytes.
View Article and Find Full Text PDFA new class of injectable and erodible hydrogels exhibiting highly robust gel strength at body temperature was fabricated by enzyme-mediated cross-linking between Pluronic copolymer micelles. Tyramine-conjugated Pluronic F-127 tri-block copolymers at two terminal ends of polyethylene oxide (PEO) side chains were synthesized and utilized to form self-assembled micelles in aqueous solution. Tyrosinase was employed to convert tyramine-conjugated micelles to highly reactive catechol conjugated micelles that could further cross-link individual Pluronic copolymer micelles to form a highly stable gel structure.
View Article and Find Full Text PDF