Publications by authors named "Hayden Ollivierre-Wilson"

Iron regulatory proteins (Irps) 1 and 2 posttranscriptionally control the expression of transcripts that contain iron-responsive element (IRE) sequences, including ferritin, ferroportin, transferrin receptor, and hypoxia-inducible factor 2α (HIF2α). We report here that mice with targeted deletion of Irp1 developed pulmonary hypertension and polycythemia that was exacerbated by a low-iron diet. Hematocrits increased to 65% in iron-starved mice, and many polycythemic mice died of abdominal hemorrhages.

View Article and Find Full Text PDF

The iron-regulatory hormone, hepcidin, regulates systemic iron homeostasis by interacting with the iron export protein ferroportin (FPN1) to adjust iron absorption in enterocytes, iron recycling through reticuloendothelial macrophages, and iron release from storage in hepatocytes. We previously demonstrated that FPN1 was highly expressed in erythroblasts, a cell type that consumes most of the serum iron for use in hemoglobin synthesis. Herein, we have demonstrated that FPN1 localizes to the plasma membrane of erythroblasts, and hepcidin treatment leads to decreased expression of FPN1 and a subsequent increase in intracellular iron concentrations in both erythroblast cell lines and primary erythroblasts.

View Article and Find Full Text PDF

To better understand the tissue iron overload and anemia previously reported in a human patient and mice that lack heme oxygenase-1 (HO-1), we studied iron distribution and pathology in HO-1(Hmox1)(-/-) mice. We found that resident splenic and liver macrophages were mostly absent in HO-1(-/-) mice. Erythrophagocytosis caused the death of HO-1(-/-) macrophages in in vitro experiments, supporting the hypothesis that HO-1(-/-) macrophages died of exposure to heme released on erythrophagocytosis.

View Article and Find Full Text PDF

Ferroportin (FPN1), the sole characterized mammalian iron exporter, has an iron-responsive element (IRE) in its 5' untranslated region, which ensures that its translation is repressed by iron regulatory proteins (IRPs) in iron-deficient conditions to maintain cellular iron content. However, here we demonstrate that duodenal epithelial and erythroid precursor cells utilize an alternative upstream promoter to express a FPN1 transcript, FPN1B, which lacks the IRE and is not repressed in iron-deficient conditions. The FPN1B transcript encodes ferroportin with an identical open reading frame and contributes significantly to ferroportin protein expression in erythroid precursors and likely also in the duodenum of iron-starved animals.

View Article and Find Full Text PDF

In mammals, two homologous cytosolic regulatory proteins, iron regulatory protein 1 (also known as IRP1 and Aco1) and iron regulatory protein 2 (also known as IRP2 and Ireb2), sense cytosolic iron levels and posttranscriptionally regulate iron metabolism genes, including transferrin receptor 1 (TfR1) and ferritin H and L subunits, by binding to iron-responsive elements (IREs) within target transcripts. Mice that lack IRP2 develop microcytic anemia and neurodegeneration associated with functional cellular iron depletion caused by low TfR1 and high ferritin expression. IRP1 knockout (IRP1(-/-)) animals do not significantly misregulate iron metabolism, partly because IRP1 is an iron-sulfur protein that functions mainly as a cytosolic aconitase in mammalian tissues and IRP2 activity increases to compensate for loss of the IRE binding form of IRP1.

View Article and Find Full Text PDF

Iron regulatory proteins 1 and 2 (IRPs) are homologous mammalian cytosolic proteins that sense intracellular iron levels and post-transcriptionally regulate expression of ferritin, transferrin receptor, and other iron metabolism proteins. Adult mice with homozygous targeted deletion of IRP2 develop microcytic anemia, elevated red cell protoporphyrin IX levels, high serum ferritin, and adult-onset neurodegeneration. Mice with homozygous deletion of IRP1 develop no overt abnormalities, but mice that lack both copies of IRP2 and one copy of IRP1 develop a more severe anemia and neurodegeneration than mice with deletion of IRP2 alone.

View Article and Find Full Text PDF

The two iron regulatory proteins IRP1 and IRP2 bind to transcripts of ferritin, transferrin receptor and other target genes to control the expression of iron metabolism proteins at the post-transcriptional level. Here we compare the effects of genetic ablation of IRP1 to IRP2 in mice. IRP1-/- mice misregulate iron metabolism only in the kidney and brown fat, two tissues in which the endogenous expression level of IRP1 greatly exceeds that of IRP2, whereas IRP2-/- mice misregulate the expression of target proteins in all tissues.

View Article and Find Full Text PDF