Publications by authors named "Hayden Houser"

The partial molar volumes of alcohols in water exhibit a non-monotonic dependence on concentration at room temperature, initially decreasing with increasing concentration before passing through a minimum and rising to the pure liquid plateau. This anomalous behavior is associated with hydrophobic interactions. We report molecular simulations of short chain alcohols and alkanes in water to examine the volumetric properties of these mixtures at infinite dilution over a range of temperatures.

View Article and Find Full Text PDF

We probe the anomalous compressibilities of dilute mixtures of alcohols and alkane gases in water using molecular simulations. The response to increasing solute concentration depends sensitively on temperature, with the compressibility decreasing upon solute addition at low temperatures and increasing at elevated temperatures. The thermodynamic origin of stiffening is directly tied to the solute's partial compressibility, which is negative at low temperatures and rises above water's compressibility with increasing temperature.

View Article and Find Full Text PDF

Theoretical descriptions of molecular-scale solvation frequently invoke contributions proportional to the solvent exposed area, under the tacit expectation that those contributions are tied to a surface tension for macroscopic surfaces. Here we examine the application of revised scaled-particle theory (RSPT) to extrapolate molecular simulation results for the wetting of molecular-to-meso-scale repulsive solutes in liquid water and decane to determine the interfacial free energies of hard, flat surfaces. We show that the RSPT yields interfacial free energies at ambient pressures that are consistently greater than that obtained from the liquid-vapor surface tensions of water and decane by ∼4%.

View Article and Find Full Text PDF

A solute's partial molar volume determines its response to pressure, which can result in changes in molecular conformation or assembly state. Computing speed advances have made accurate partial molar volume evaluation in water routine, allowing for the dissection of the molecular factors underlying this significant thermodynamic variable. A recent simulation analysis of the volumes of nonpolar molecular solutes in water reported that the apparent solvent-free border thickness enshrouding these solutes grows with increasing solute size, based on the assumption the solute can be treated as an individual sphere [Biophys.

View Article and Find Full Text PDF