Publications by authors named "Hayden A Evans"

Despite their many advantages, covalent organic frameworks (COFs) built from three-dimensional monomers are synthetically difficult to functionalize. Herein, we provide a new synthetic approach to the functionalization of a three-dimensional covalent organic framework (COF-300) by using a series of solid-state linkage transformations. By reducing the imine linkages of the framework to amine linkages, we produced a more hydrolytically stable material and liberated a nucleophilic amino group, poised for further functionalization.

View Article and Find Full Text PDF

Long-duration storage of hydrogen is necessary for coupling renewable H with stationary fuel cell power applications. In this work, aluminum formate (ALF), which adopts the ReO-type structure, is shown to have remarkable H storage performance at non-cryogenic (>120 K) temperatures and low pressures. The most promising performance of ALF is found between 120 K and 160 K and at 10 bar to 20 bar.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a new material, Al(HCOO), ALF, that can selectively capture carbon dioxide (CO) from hydrocarbon mixtures, which is crucial in the petrochemical industry for acetylene production.
  • ALF exhibits a high CO capacity of 86.2 cm³/g and demonstrates impressive separation ratios of CO from both acetylene (CH) and ethylene (C2H4), making it an effective sorbent for this purpose.
  • The material's ability to preferentially capture CO is attributed to its unique pore structure, which facilitates hydrogen bonding specifically with CO, as confirmed by various scientific techniques including infrared spectroscopy and molecular simulations.
View Article and Find Full Text PDF

Separating oxygen from air to create oxygen-enriched gas streams is a process that is significant in both industrial and medical fields. However, the prominent technologies for creating oxygen-enriched gas streams are both energy and infrastructure intensive as they use cryogenic temperatures or materials that adsorb N from air. The latter method is less efficient than the methods that adsorb O directly.

View Article and Find Full Text PDF

Lone pair-driven distortions are a hallmark of many technologically important lead (Pb)-based materials. The role of Pb in polar perovskites is well understood and easily manipulated for applications in piezo- and ferroelectricity, but the control of ordered lone pair behavior in Pb-based pyrochlores is less clear. Crystallographically and geometrically more complex than the perovskite structure, the pyrochlore structure is prone to geometric frustration of local dipoles due to a triangular arrangement of cations on a diamond lattice.

View Article and Find Full Text PDF

A combination of gas adsorption and gas breakthrough measurements show that the metal-organic framework, Al(HCOO) (ALF), which can be made inexpensively from commodity chemicals, exhibits excellent CO adsorption capacities and outstanding CO/N selectivity that enable it to remove CO from dried CO-containing gas streams at elevated temperatures (323 kelvin). Notably, ALF is scalable, readily pelletized, stable to SO and NO, and simple to regenerate. Density functional theory calculations and in situ neutron diffraction studies reveal that the preferential adsorption of CO is a size-selective separation that depends on the subtle difference between the kinetic diameters of CO and N.

View Article and Find Full Text PDF

Natrium super ionic conductor (NASICON) compounds form a rich and highly chemically tunable family of crystalline materials that are of widespread interest because they include exemplars with high ionic conductivity, low thermal expansion, and redox tunability. This makes them suitable candidates for applications ranging from solid-state batteries to nuclear waste storage materials. The key to an understanding of these properties, including the origins of effective cation transport and low, anisotropic (and sometimes negative) thermal expansion, lies in the lattice dynamics associated with specific details of the crystal structure.

View Article and Find Full Text PDF

In the pursuit of urgently needed, energy dense solid-state batteries for electric vehicle and portable electronics applications, halide solid electrolytes offer a promising path forward with exceptional compatibility against high-voltage oxide electrodes, tunable ionic conductivities, and facile processing. For this family of compounds, synthesis protocols strongly affect cation site disorder and modulate Li mobility. In this work, we reveal the presence of a high concentration of stacking faults in the superionic conductor LiYCl and demonstrate a method of controlling its Li conductivity by tuning the defect concentration with synthesis and heat treatments at select temperatures.

View Article and Find Full Text PDF

LiOHCl is an exemplar of the antiperovskite family of ionic conductors, for which high ionic conductivities have been reported, but in which the atomic-level mechanism of ion migration is unclear. The stable phase is both crystallographically defective and disordered, having ∼1/3 of the Li sites vacant, while the presence of the OH anion introduces the possibility of rotational disorder that may be coupled to cation migration. Here, complementary experimental and computational methods are applied to understand the relationship between the crystal chemistry and ionic conductivity in LiOHCl, which undergoes an orthorhombic to cubic phase transition near 311 K (≈38 °C) and coincides with the more than a factor of 10 change in ionic conductivity (from 1.

View Article and Find Full Text PDF

Coordinatively unsaturated metal sites within certain zeolites and metal-organic frameworks can strongly adsorb a wide array of substrates. While many classical examples involve electron-poor metal cations that interact with adsorbates largely through physical interactions, unsaturated electron-rich metal centers housed within porous frameworks can often chemisorb guests amenable to redox activity or covalent bond formation. Despite the promise that materials bearing such sites hold in addressing myriad challenges in gas separations and storage, very few studies have directly interrogated mechanisms of chemisorption at open metal sites within porous frameworks.

View Article and Find Full Text PDF

The widespread implementation of H as a fuel is currently hindered by the high pressures or cryogenic temperatures required to achieve reasonable storage densities. In contrast, the realization of materials that strongly and reversibly adsorb hydrogen at ambient temperatures and moderate pressures could transform the transportation sector and expand adoption of fuel cells in other applications. To date, however, no adsorbent has been identified that exhibits a binding enthalpy within the optimal range of -15 to -25 kJ/mol for ambient-temperature hydrogen storage.

View Article and Find Full Text PDF

Benzene and acetonitrile are two of the most commonly used solvents found in almost every chemical laboratory. Titan is one other place in the solar system that has large amounts of these compounds. On Titan, organic molecules are produced in the atmosphere and carried to the surface where they can mineralize.

View Article and Find Full Text PDF

Materials with the perovskite ABX structure play a major role across materials chemistry and physics as a consequence of their ubiquity and wide range of useful properties. ReO-type structures can be described as ABX perovskites in which the A-cation site is unoccupied, giving rise to the general composition BX, where B is typically a cation and X is a bridging anion. The chemical diversity of such structures is extensive, ranging from simple oxides and fluorides, such as WO and AlF, to complex structures in which the bridging anion is polyatomic, such as in the Prussian blue-related cyanides Fe(CN) and CoPt(CN).

View Article and Find Full Text PDF

Trivalent metal hypophosphites with the general formula M(H2PO2)3 (M = V, Al, Ga) adopt the ReO3 structure, with each compound displaying two structural polymorphs. High-pressure synchrotron X-ray studies reveal a pressure-driven phase transition in Ga(H2PO2)3 that can be understood on the basis of ab initio thermodynamics.

View Article and Find Full Text PDF

Perovskite-derived hybrid platinum iodides with the general formula A2PtIVI6 (A = formamidinium FA and guanidinium GUA) accommodate excess I2 to yield hydrogen-bond-stabilized compounds where the I2 forms catenates with I- anions on the PtI6 octahedra.

View Article and Find Full Text PDF

We describe the solid-state structural evolution in four hybrid hexaiodoplatinate(IV) compounds, demonstrating the increasingly important role that extended hydrogen bonding plays in directing the structure across the series. The compounds are APtI, where A is one of the following amines: ammonium, NH; methylammonium, CHNH; formamidinium, CH(NH); guanidinium, C(NH). These are closely related in structure and properties to the hybrid halide perovskites of lead(II) that have recently established their prowess in optoelectronics.

View Article and Find Full Text PDF

Subwavelength Mie resonators have enabled new classes of optical antenna and nanophotonic devices and can act as the basic meta-atom constituents of low-loss dielectric metasurfaces. In any application, tunable Mie resonances are key to achieving a dynamic and reconfigurable operation. However, the active tuning of these nanoantennas is still limited and usually results in sub-linewidth resonance tuning.

View Article and Find Full Text PDF

Main-group halide perovskites have generated much excitement of late because of their remarkable optoelectronic properties, ease of preparation, and abundant constituent elements, but these curious and promising materials differ in important respects from traditional semiconductors. The distinguishing chemical, structural, and electronic features of these materials present the key to understanding the origins of the optoelectronic performance of the well-studied hybrid organic-inorganic lead halides and provide a starting point for the design and preparation of new functional materials. Here we review and discuss these distinguishing features, among them a defect-tolerant electronic structure, proximal lattice instabilities, labile defect migration, and, in the case of hybrid perovskites, disordered molecular cations.

View Article and Find Full Text PDF

Two new compounds containing tetrathiafulvalene (TTF) cations with extended and discrete anions based on Bi and I are reported. The compound (TTF)BiI comprises [BiII] chains of edge-shared octahedra that are interspersed with stacks of TTF. The compound (TTF)BiI has mixed-valence stacks of TTF and TTF and discrete molecules of TTF separated by discrete [BiI] anions.

View Article and Find Full Text PDF

Stable s(2) lone pair electrons on heavy main-group elements in their lower oxidation states drive a range of important phenomena, such as the emergence of polar ground states in some ferroic materials. Here we study the perovskite halide CsSnBr3 as an embodiment of the broader materials class. We show that lone pair stereochemical activity due to the Sn(2+) s(2) lone pair causes a crystallographically hidden, locally distorted state to appear upon warming, a phenomenon previously referred to as emphanisis.

View Article and Find Full Text PDF

We report the preparation and X-ray crystallographic characterization of the first crystalline homoatomic polymer chain, which is part of a semiconducting pyrroloperylene-iodine complex. The crystal structure contains infinite polyiodide I∞ (δ-) . Interestingly, the structure of iodine within the insoluble, blue starch-iodine complex has long remained elusive, but has been speculated as having infinite chains of iodine.

View Article and Find Full Text PDF

Hybrid main group halide perovskites hold great technological promise in optoelectronic applications and present rich and complex evolution of structure and dynamics. Here we present low-temperature dielectric measurements and calorimetry of APbI3 [A = CH3NH3(+), HC(NH2)2(+)] that suggest glassy behavior on cooling. In both compounds, the dielectric loss displays frequency-dependent peaks below 100 K characteristic of a glassy slowing of relaxation dynamics, with HC(NH2)2PbI3 exhibiting greater glass fragility.

View Article and Find Full Text PDF

Fertilizing pastures with poultry litter has led to an increased incidence of nutrient-saturated soils, particularly on highly fertilized, well drained soils. Applying litter to silvopastures, in which loblolly pine (Pinus taeda L.) and bahiagrass (Paspalum notatum) production are integrated, may be an ecologically desirable alternative for upland soils of the southeastern USA.

View Article and Find Full Text PDF