Publications by authors named "Haydar Alturaihi"

In addition to its classical receptor, CD40, it is now well established that CD154 also binds αIIbβ3, α5β1, and αMβ2 integrins. Although these integrins are all members of the same family, they bind CD154 differently. The current investigation aims to analyze the interaction of CD154 with α5β1 and αMβ2 and investigate its role in bidirectional signals in various human cell lines.

View Article and Find Full Text PDF

Background: Intravenous immunoglobulin (IVIg) is a polyclonal IgG preparation with potent immunomodulating properties. Our laboratory demonstrated that IVIg significantly increases numbers of forkhead box protein 3-positive regulatory T (Treg) cells through generation of tolerogenic dendritic cells (DCs) in an allergic airways disease model.

Objective: We sought to investigate potential receptors on DCs mediating these events.

View Article and Find Full Text PDF

In addition to its classical CD40 receptor, CD154 also binds to αIIbβ3, α5β1, and αMβ2 integrins. Binding of CD154 to these receptors seems to play a key role in the pathogenic processes of chronic inflammation. This investigation was aimed at analyzing the functional interaction of CD154 with CD40, αIIbβ3, and α5β1 receptors.

View Article and Find Full Text PDF

CD40, a member of the TNF receptor family, is expressed on a variety of immune and non-immune cells. Its interaction with its ligand, CD154, plays a pivotal role in humoral and cell-mediated immunity. A low level of CD40 is constitutively associated within membrane lipid rafts and, upon engagement, this level is significantly enhanced.

View Article and Find Full Text PDF

Although signal pathways triggered via the CD40 molecule are well characterized, those induced via CD154 are less known. This study demonstrates that engagement of CD154 in Jurkat D1.1 cells with soluble CD40 leads to PKC alpha and delta activation, calcium mobilization, and phosphorylation of the Map kinases ERK1/2 and p38.

View Article and Find Full Text PDF

Somatostatin (SST) analogs have been successfully used in the medical treatment of acromegaly, caused by GH hypersecreting pituitary adenomas. Patients on SST analogs rarely develop tachyphylaxis despite years of continuous administration. It has been recently proposed that a functional association between SST receptor (SSTR) subtypes 2 and 5 exists to account for this behavior; however, a physical interaction has yet to be identified.

View Article and Find Full Text PDF

Somatostatin and dopamine receptors are well expressed and co-localized in several brain regions, suggesting the possibility of functional interactions. In the present study we used a combination of pharmacological, biochemical and photobleaching fluorescence resonance energy transfer (pbFRET) to determine the functional interactions between human somatostatin receptor 2 (hSSTR2) and human dopamine receptor 2 (hD2R) in both co-transfected CHO-K1 or HEK-293 cells as well as in cultured neuronal cells which express both the receptors endogenously. In monotransfected CHO-K1 or HEK-293 cells, D2R exists as a preformed dimer which is insensitive to agonist or antagonist treatment.

View Article and Find Full Text PDF

In beta-amyloid (Abeta)-induced neurotoxicity, activation of the NMDA receptor, increased Ca2+ and oxidative stress are intimately associated with neuronal cell death as normally seen in NMDA-induced neurotoxicity. We have recently shown selective sparing of somatostatin (SST)-positive neurons and increased SST expression in NMDA agonist-induced neurotoxicity. Accordingly, the present study was undertaken to determine the effect of Abeta25-35-induced neurotoxicity on the expression of SST in cultured cortical neurons.

View Article and Find Full Text PDF

Somatostatin (SST) inhibition of hormone hypersecretion from tumors is mediated by somatostatin receptors (SSTRs). SSTRs also play an important role in controlling tumor growth through specific antiproliferative actions. These receptors are well expressed in numerous normal and tumor tissues and are susceptible to regulation by a variety of factors.

View Article and Find Full Text PDF