Vigorous research has been conducted to accumulate biological and theoretical knowledge about neurodevelopmental disorders, including molecular, neural, computational, and behavioral characteristics; however, these findings remain fragmentary and do not elucidate integrated mechanisms. An obstacle is the heterogeneity of developmental pathways causing clinical phenotypes. Additionally, in symptom formations, the primary causes and consequences of developmental learning processes are often indistinguishable.
View Article and Find Full Text PDFThe brain attenuates its responses to self-produced exteroceptions (e.g., we cannot tickle ourselves).
View Article and Find Full Text PDFThe mechanism underlying the emergence of emotional categories from visual facial expression information during the developmental process is largely unknown. Therefore, this study proposes a system-level explanation for understanding the facial emotion recognition process and its alteration in autism spectrum disorder (ASD) from the perspective of predictive processing theory. Predictive processing for facial emotion recognition was implemented as a hierarchical recurrent neural network (RNN).
View Article and Find Full Text PDFNeurodevelopmental disorders are characterized by heterogeneous and non-specific nature of their clinical symptoms. In particular, hyper- and hypo-reactivity to sensory stimuli are diagnostic features of autism spectrum disorder and are reported across many neurodevelopmental disorders. However, computational mechanisms underlying the unusual paradoxical behaviors remain unclear.
View Article and Find Full Text PDFNeurodevelopmental disorders, including autism spectrum disorder, have been intensively investigated at the neural, cognitive, and behavioral levels, but the accumulated knowledge remains fragmented. In particular, developmental learning aspects of symptoms and interactions with the physical environment remain largely unexplored in computational modeling studies, although a leading computational theory has posited associations between psychiatric symptoms and an unusual estimation of information uncertainty (precision), which is an essential aspect of the real world and is estimated through learning processes. Here, we propose a mechanistic explanation that unifies the disparate observations a hierarchical predictive coding and developmental learning framework, which is demonstrated in experiments using a neural network-controlled robot.
View Article and Find Full Text PDFRecently, applying computational models developed in cognitive science to psychiatric disorders has been recognized as an essential approach for understanding cognitive mechanisms underlying psychiatric symptoms. Autism spectrum disorder is a neurodevelopmental disorder that is hypothesized to affect information processes in the brain involving the estimation of sensory precision (uncertainty), but the mechanism by which observed symptoms are generated from such abnormalities has not been thoroughly investigated. Using a humanoid robot controlled by a neural network using a precision-weighted prediction error minimization mechanism, it is suggested that both increased and decreased sensory precision could induce the behavioral rigidity characterized by resistance to change that is characteristic of autistic behavior.
View Article and Find Full Text PDF