Background: Regulation of temperature is clinically important in the care of neonates because it has a significant impact on prognosis. Although probes that make contact with the skin are widely used to monitor temperature and provide spot central and peripheral temperature information, they do not provide details of the temperature distribution around the body. Although it is possible to obtain detailed temperature distributions using multiple probes, this is not clinically practical.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Fetal heart rate monitoring using the abdominal electrocardiograph (ECG) is an important topic for the diagnosis of heart defects. Many studies on fetal heart rate detection have been presented, however, their accuracy is still unsatisfactory. That is because the fetal ECG waveform is contaminated by maternal ECG interference, muscle contractions, and motion artifacts.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Antenatal fetal health monitoring primarily depends on the signal analysis of abdominal or transabdominal electrocardiogram (ECG) recordings. The noninvasive approach for obtaining fetal heart rate (HR) reduces risks of potential infections and is convenient for the expectant mother. However, in addition to strong maternal ECG presence, undesirable signals due to body motion activity, muscle contractions, and certain bio-electric potentials degrade the diagnostic quality of obtained fetal ECG from abdominal ECG recordings.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Despite the enormous potential applications, non-invasive recordings have not yet made enough satisfaction for fetal disease detection. This is mainly due to the fetal ECG signal is contaminated by the maternal electrocardiograph (ECG) interference, muscle contractions, and motion artifacts. In this paper, we propose a joint multiple subspace-based blind source separation (BSS) approach to extract the fetal heart rate (HR), so that it could greatly reduce the effect of maternal ECG and motion artifacts.
View Article and Find Full Text PDFPurpose: We developed a system for calculating patient positional displacement between digital radiography images (DRs) and digitally reconstructed radiography images (DRRs) to reduce patient radiation exposure, minimize individual differences between radiological technologists in patient positioning, and decrease positioning time. The accuracy of this system at five sites was evaluated with clinical data from cancer patients. The dependence of calculation accuracy on the size of the region of interest (ROI) and initial position was evaluated for clinical use.
View Article and Find Full Text PDF